【題目】設(shè),
,函數(shù)
.
(Ⅰ)設(shè)不等式的解集為C,當(dāng)
時(shí),求實(shí)數(shù)
取值范圍;
(Ⅱ)若對(duì)任意,都有
成立,試求
時(shí),
的值域;
(Ⅲ)設(shè),求
的最小值.
【答案】(Ⅰ)(Ⅱ)
.(Ⅲ)當(dāng)
時(shí),函數(shù)的最小值為
;當(dāng)
時(shí),函數(shù)的最小值為
;當(dāng)
時(shí),函數(shù)的最小值為
【解析】
(Ⅰ)根據(jù),且
,可知滿足題意的條件為使函數(shù)
與
軸的兩個(gè)交點(diǎn)橫坐標(biāo)
,可得關(guān)于m的不等式組,解不等式組即可得m的取值范圍;
(Ⅱ)根據(jù)可得對(duì)稱軸,即可求得m的值。則二次函數(shù)在B集合內(nèi)的值域即可求出;
(Ⅲ)對(duì)分類討論,在
的不同取值范圍下討論
的單調(diào)性,即可求得在
不同取值范圍時(shí)的最小值。
(Ⅰ),因?yàn)?/span>
,二次函數(shù)
圖象
開口向上,且恒成立,故圖象始終與
軸有兩個(gè)交點(diǎn),由題意,要使這兩個(gè)
交點(diǎn)橫坐標(biāo),當(dāng)且僅當(dāng)
, 解得
(Ⅱ)對(duì)任意都有
,所以
圖象關(guān)于直線
對(duì)稱
所以,得
所以為
上減函數(shù).
;
.
故時(shí),
值域?yàn)?/span>
.
(Ⅲ)令,則
(i)當(dāng)時(shí),
,
當(dāng),則函數(shù)
在
上單調(diào)遞減,
從而函數(shù)在
上的最小值為
.
若,則函數(shù)
在
上的最小值為
,且
.
(ii)當(dāng)時(shí),函數(shù)
若,則函數(shù)
在
上的最小值為
,且
若,則函數(shù)
在
上單調(diào)遞增,
從而函數(shù)在
上的最小值為
.
綜上,當(dāng)時(shí),函數(shù)
的最小值為
當(dāng)時(shí),函數(shù)
的最小值為
當(dāng)時(shí),函數(shù)
的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)若關(guān)于的方程
只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍;
(2)若當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為,射線
與橢圓的交點(diǎn)為M,過M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于A,B兩點(diǎn)(異于M).
(1)求證:直線AB的斜率為定值;
(2)求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形,
,
,現(xiàn)將
沿
折起,當(dāng)二面角
的大小在
時(shí),直線
和
所成角為
,則
的最大值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐 中,
平面
,底面
是等腰梯形,且
,其中
.
(1)證明:平面 平面
.
(2)求點(diǎn) 到平面
的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解高一學(xué)生暑假里在家讀書情況,特隨機(jī)調(diào)查了50名男生和50名女生平均每天的閱讀時(shí)間(單位:分鐘),統(tǒng)計(jì)如下表:
(1)根據(jù)統(tǒng)計(jì)表判斷男生和女生誰(shuí)的平均讀書時(shí)間更長(zhǎng)?并說(shuō)明理由;
(2)求100名學(xué)生每天讀書時(shí)間的平均數(shù),并將每天平均時(shí)間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:
(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認(rèn)為“平均閱讀時(shí)間超過或不超過平均數(shù)是否與性別有關(guān)?”
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為
,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):
據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
,且
).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時(shí),
;當(dāng)
時(shí),
.
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來(lái)研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對(duì)
分類討論求得函數(shù)在
不同取值時(shí)的最大值.
【試題解析】
(Ⅰ),
設(shè)
,則
.
∵,
,∴
在
上單調(diào)遞增,
從而得在
上單調(diào)遞增,又∵
,
∴當(dāng)時(shí),
,當(dāng)
時(shí),
,
因此, 的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知.
∵,
,
∴.
設(shè),
則
.
∵當(dāng)時(shí),
,∴
在
上單調(diào)遞增.
又∵,∴當(dāng)
時(shí),
;當(dāng)
時(shí),
.
①當(dāng)時(shí),
,即
,這時(shí),
;
②當(dāng)時(shí),
,即
,這時(shí),
.
綜上, 在
上的最大值為:當(dāng)
時(shí),
;
當(dāng)時(shí),
.
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
的普通方程為
. 在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓 的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與
軸和
軸的交點(diǎn)分別為
,
為圓
上的任意一點(diǎn),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com