【題目】拋擲紅、藍兩顆骰子,當已知紅色骰子的點數為偶數時,兩顆骰子的點數之和不小于9的概率是( )
A. B.
C.
D.
【答案】C
【解析】
利用列舉法求出當紅色骰子的點數為偶數時,有18種,其中兩棵骰子點數之和不小于9的有6種,由此能求出當已知紅色骰子的點數為偶數時,兩顆骰子的點數之和不小于9的概率.
拋擲紅、藍兩枚骰子,第一個數字代表紅色骰子,第二個數字代表藍色骰子,
當紅色骰子的點數為偶數時,有18種,分別為:
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),
(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),
其中兩棵骰子點數之和不小于9的有6種,分別為:
(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),
∴當已知紅色骰子的點數為偶數時,兩顆骰子的點數之和不小于9的概率是P=.
故選:C.
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有關于的一元二次方程
.
(Ⅰ)若是從
四個數中任取的一個數,
是從
三個數中任取的一個數,求上述方程有實根的概率.
(Ⅱ)若是從區間
任取的一個數,
是從區間
任取的一個數,求上述方程有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在空間中,下列命題正確的是( )
A.若平面內有無數條直線與直線
平行,則
∥
B.若平面內有無數條直線與平面
平行,則
∥
C.若平面內有無數條直線與直線
垂直,則
D.若平面內有無數條直線與平面
垂直,則
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(
為自然對數的底)。
(Ⅰ)求函數的單調區間;
(Ⅱ)若存在均屬于區間的
,
,且
,使
,證明:
;
(Ⅲ)對于函數與
定義域內的任意實數
,若存在常數
,
,使得
和
都成立,則稱直線
為函數
與
的分界線。試探究當
時,函數
與
是否存在“分界線”?若存在,請給予證明,并求出
,
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學對高三年級進行身高統計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm)
(1)根據頻率分布直方圖,求出這20名學生身高中位數的估計值和平均數的估計值.
(2)在身高為140—160的學生中任選2個,求至少有一人的身高在150—160之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖象上所有點的橫坐標縮短到原來的
倍(縱坐標不變),再將所得的圖象向左平移
個單位長度后得到函數
的圖象.
(1)寫出函數的解析式;
(2)若對任意
,
恒成立,求實數
的取值范圍;
(3)求實數和正整數
,使得
在
上恰有
個零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在△中,
,
分別為
,
的中點,
為
的中點,
,
.將△
沿
折起到△
的位置,使得平面
平面
,
為
的中點,如圖2.
(Ⅰ)求證: 平面
;
(Ⅱ)求F到平面A1OB的距離.
圖1 圖2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com