分析 (1)求出F(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間,注意定義域(0,+∞);
(2)求出導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$(0<x0≤3)恒成立?a≥(-$\frac{1}{2}$x02+x0)max,運(yùn)用二次函數(shù)的最值求法,即可得到最大值,進(jìn)而得到a的最小值.
解答 解:(1)F(x)=lnx+$\frac{a}{x}$(x>0),F(xiàn)′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,a>0,
當(dāng)x>a,F(xiàn)′(x)>0,f(x)在(a,+∞)單調(diào)遞增,
當(dāng)0<x<a,F(xiàn)′(x)<0,F(xiàn)(x)在(0,a)單調(diào)遞減,
則F(x)的增區(qū)間為(a,+∞),減區(qū)間為(0,a);
(2)由y′=$\frac{x-a}{{x}^{2}}$,a>0(0<x≤3),
k=y′|${\;}_{x={x}_{0}}^{\;}$=$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$(0<x0≤3)恒成立?a≥(-$\frac{1}{2}$x02+x0)max,
當(dāng)x0=1時(shí),-$\frac{1}{2}$x02+x0 取得最大值$\frac{1}{2}$,
∴a≥$\frac{1}{2}$,
∴amin=$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)恒成立問題,考查化歸思想的綜合運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2 | B. | ($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2 | C. | ($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$) | D. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 150° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 20 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1組 | B. | 2組 | C. | 3組 | D. | 4組 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com