已知等差數(shù)列的首項(xiàng)
,公差
,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列
的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、
的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意的
,均有
成立,求
.
(1),
(2)
.
解析試題分析:(1)由已知得,
,
,
所以,解得
或
.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/7/1kkxr3.png" style="vertical-align:middle;" />,所以.所以
.
又,
,所以等比數(shù)列
的公比
,
所以.
(2)由 ①,得當(dāng)
時(shí),
②,
①-②,得當(dāng)時(shí),
,所以
2).
而時(shí),
,所以
.所以
.
所以.
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合;數(shù)列的求和.
點(diǎn)評(píng):本題考查了等比數(shù)列的性質(zhì),以及等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求法,對(duì)于復(fù)雜數(shù)列的前n項(xiàng)和求法我們一般先求出數(shù)列的通項(xiàng)公式,再依據(jù)數(shù)列的特點(diǎn)采取具體的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列 的所有項(xiàng)均為正數(shù),首項(xiàng)
且
成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前
項(xiàng)和為
若
求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前
項(xiàng)和為
,且
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足
,求
的通項(xiàng)公式;
(3)求數(shù)列前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱
為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列
,如果函數(shù)
使得
仍為一個(gè)“三角形”數(shù)列,則稱
是數(shù)列
的“保三角形函數(shù)”,
.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若
是數(shù)列
的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,
是數(shù)列
的前n項(xiàng)和,且滿足
,證明
是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),
,和數(shù)列1,
,
,(
)提出一個(gè)正確的命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{an}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an和bn;
(Ⅱ) 設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,
,前
項(xiàng)和為
,等比數(shù)列
各項(xiàng)均為正數(shù),
,且
,
的公比
.
(1)求與
;(2)求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
,
(
).
(1)計(jì)算,
,
;
(2)猜想數(shù)列的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com