日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
7.已知函數f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)設F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求實數a的值;
(2)若x≥1時,f(x)≤g(x)恒成立,求實數a的取值范圍;
(3)當n≥2時且n∈N*時,求證:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

分析 (1)求出F(x)的導數,計算
(2)x≥1時,lnx≤x+$\frac{a}{x}$恒成立,等價于a≥[xlnx-x2]max,構造新的函數k(x)=xlnx-x2造.求出函數的最大值即可求出a的取值范圍.
(3)方法一:由(2)可知當a=-1時,x≥1時,lnx≤x-$\frac{1}{x}$恒成立所以n∈N*,n≥2時,有lnn<n-$\frac{1}{n}$⇒$\frac{lnn}{n+1}$<$\frac{n-1}{n}$,進而可證.
方法二:利用數學歸納法證明.即可得證.

解答 解:(1)F(x)=f(x)+g(x)-x=lnx+$\frac{a}{x}$,其定義域為{x|x>0},
則F′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,x>0,
①若a≤1,則對x∈[1,e],F′(x)≥0恒成立,故F(x)在[1,e]上單調遞增,
F(x)min=F(11)=a≤1,與題意矛盾,舍去;
②若1<a<e,則F(x)在[1,a]上單調遞減,在[a,e]上單調遞增,
F(x)min=F(a)=1+lna=$\frac{3}{2}$,解得:a=$\sqrt{e}$,符合題意;
③若a≥e,則F(x)在[1,e]上單調遞減,F(x)min=F(e)=1+$\frac{a}{e}$≥2,矛盾,舍去;
綜上:a=$\sqrt{e}$;                                      
(2)lnx≤x+$\frac{a}{x}$恒成立,
等價于a≥[xlnx-x2]max
k(x)=xlnx-x2,k′(x)=1+lnx-2x,
[k′(x)]′=$\frac{1}{x}$-2<0
k′(x)在[1,+∞)上單調遞減,
k′(x)≤k′(1)=-1<0,
k(x)在[1,+∞)上單調遞減,
所以k(x)的最大值為k(1)=-1,所以a≥-1;
(3)證法一:由(2)知當a=-1時,x≥1時,lnx≤x-$\frac{1}{x}$恒成立,
所以n∈N*,n≥2時,有lnn<n-$\frac{1}{n}$⇒$\frac{lnn}{n+1}$<$\frac{n-1}{n}$,
所以 $\frac{ln2}{3}$<$\frac{1}{2}$,$\frac{ln3}{4}$<$\frac{2}{3}$,$\frac{lnn}{n+1}$<$\frac{n-1}{n}$,
相乘得 $\frac{ln2}{3}$•$\frac{ln3}{4}$••$\frac{lnn}{n+1}$<$\frac{1}{n}$;
方法二:數學歸納法
①當n=2時,顯然成立,
②假設n=k(n∈N*,n≥2)成立,即 $\frac{ln2}{3}$•$\frac{ln3}{4}$••$\frac{lnk}{k+1}$<$\frac{1}{k}$,
那么當n=k+1時,$\frac{ln2}{3}$•$\frac{ln3}{4}$••$\frac{lnk}{k+1}$•$\frac{ln(k+1)}{k+2}$<$\frac{1}{k}$•$\frac{ln(k+1)}{k+2}$,
下面只需證$\frac{1}{k}$•$\frac{ln(k+1)}{k+2}$<$\frac{1}{k+1}$,(k+1)ln(k+1)<k(k+2)
設t=k+1≥3,所以設k(t)=tlnt-t2+1
由(2)知當a=-1時,x≥1時,lnx≤x-$\frac{1}{x}$恒成立,
即k(t)=tlnt-t2++1<0在t=k+1≥3恒成立,
所以 $\frac{ln2}{3}$•$\frac{ln3}{4}$••$\frac{lnk}{k+1}$•$\frac{ln(k+1)}{k+2}$<$\frac{1}{k+1}$,
綜合(1)(2)命題成立.

點評 此題主要考查函數單調性的判斷及函數的恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow{b}$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)與($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖是一個獎杯三視圖,試根據獎杯三視圖計算它的表面積與體積.(尺寸單位:cm,取$π≈3,\sqrt{34}≈6$,結果精確到整數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.空間中任意放置的棱長為2的正四面體ABCD.下列命題正確的是個數是(  ) 個
①正四面體ABCD的主視圖面積可能是$\sqrt{2}$;
②正四面體ABCD的主視圖面積可能是$\frac{2\sqrt{6}}{3}$;
③正四面體ABCD的主視圖面積可能是$\sqrt{3}$;
④正四面體ABCD的主視圖面積可能是2
⑤正四面體ABCD的主視圖面積可能是4.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.“a=1“是“函數f(x)=ax2-2x+1只有一個零點”的(  )
A.充要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在△ABC中,角A,B,C所對的邊分別是a,b,c,滿足cosA=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面積;   
(2)若b-c=3,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.某次志愿活動,需要從6名同學中選出4人負責A、B、C、D四項工作(每人負責一項),若甲、乙均不能負責D項工作,則不同的選擇方案有(  )
A.240種B.144種C.96種D.300種

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.方程$\left\{{\begin{array}{l}x=-\frac{{2\sqrt{5}}}{5}t+2cosθ\\ y=\frac{{\sqrt{5}}}{5}t+\sqrt{3}sinθ\end{array}}$
(1)當t=0時,θ為參數,此時方程表示曲線C1請把C1的參數方程化為普通方程;
(2)當θ=$\frac{π}{3}$時,t為參數,此時方程表示曲線C2請把C2的參數方程化為普通方程;
(3)在(1)(2)的條件下,若P為曲線C1上的動點,求點P到曲線C2距離的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费性网站 | 超碰在线观看97 | 一级片免费观看 | 成年人的免费视频 | 日韩国产一区二区三区 | 免费久久 | 国产成人在线免费观看 | 国产精品视频一区二区三区 | 亚洲69视频 | 超碰免费在线播放 | 日韩一区二区视频在线观看 | 国产精品伦 | 九色91popny蝌蚪 | 女人av在线 | 超碰免费观看 | 99视频| 国产精品一区二区久久 | 玖玖伊人 | 欧美在线视频播放 | 日本天天操 | 亚洲精品乱码 | 羞羞网站在线观看 | 国产欧美视频在线观看 | 免费观看a级片 | 四虎永久在线 | 午夜你懂的 | 日韩av手机在线观看 | 男人的天堂在线 | 一区二区色| 自由成熟xxxx色视频 | 欧美在线看片 | 爱福利视频网 | 天天干天天看 | 欧美性猛交xxxx免费看久久久 | 欧美激情小视频 | 色婷婷导航| 亚洲成人免费视频 | 香港三日本三级少妇66 | 在线播放亚洲 | 一区二区美女 | 久久久久久成人 |