日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.平面內有向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),$\overrightarrow{OP}$=(2,1),點C為直線OP上的一動點.
(1)當$\overrightarrow{CA}$•$\overrightarrow{CB}$取最小值時,求$\overrightarrow{OC}$的坐標;
(2)當點C滿足(1)的條件和結論時,求cos∠ACB的值.
(3)在滿足(2)的條件下,設f(t)=t2+4t+m≥cos∠ACB在t∈[-4,4]時恒成立,求實數m的取值范圍.

分析 (1)由條件可設$\overrightarrow{OC}=(2k,k)$,而$\overrightarrow{CA}=(\overrightarrow{OA}-\overrightarrow{OC}),\overrightarrow{CB}=(\overrightarrow{OB}-\overrightarrow{OC})$,從而表示出向量$\overrightarrow{CA},\overrightarrow{CB}$的坐標,進而求得$\overrightarrow{CA}•\overrightarrow{CB}=5{k}^{2}-20k+12$,這樣便可得出k=2時$\overrightarrow{CA}•\overrightarrow{CB}$取最小值,從而得到$\overrightarrow{OC}=(4,2)$;
(2)根據(1)得到的$\overrightarrow{OC}$坐標容易求得$\overrightarrow{CA},\overrightarrow{CB}$的坐標,根據向量夾角余弦公式即可求得$cos∠ACB=-\frac{4\sqrt{17}}{17}$;
(3)由條件便可得到不等式${t}^{2}+4t+m+\frac{4\sqrt{17}}{17}≥0$在t∈[-4,4]上恒成立,這樣△≤0,從而得出m的取值范圍.

解答 解:(1)根據條件,$\overrightarrow{OC}=k\overrightarrow{OP}=(2k,k)$;
∴$\overrightarrow{CA}•\overrightarrow{CB}$=$(\overrightarrow{OA}-\overrightarrow{OC})•(\overrightarrow{OB}-\overrightarrow{OC})$
=(1-2k,7-k)•(5-2k,1-k)
=(1-2k)(5-2k)+(7-k)(1-k)
=5k2-20k+12
=5(k-2)2-8;
∴k=2時,$\overrightarrow{CA}•\overrightarrow{CB}$取最小值,此時$\overrightarrow{OC}=(4,2)$;
(2)$\overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC}=(-3,5)$,$\overrightarrow{CB}=\overrightarrow{OB}-\overrightarrow{OC}=(1,-1)$;
∴$cos∠ACB=\frac{\overrightarrow{CA}•\overrightarrow{CB}}{|\overrightarrow{CA}||\overrightarrow{CB}|}$=$\frac{-8}{\sqrt{34}\sqrt{2}}=-\frac{4\sqrt{17}}{17}$;
(3)根據條件,不等式${t}^{2}+4t+m+\frac{4\sqrt{17}}{17}≥0$在t∈[-4,4]上恒成立;
∴$△=16-4(m+\frac{4\sqrt{17}}{17})≤0$;
解得$m≥4-\frac{4\sqrt{17}}{17}$;
∴實數m的取值范圍為[$4-\frac{4\sqrt{17}}{17}$,+∞).

點評 考查共線向量基本定理,向量坐標的減法運算及數乘運算、數量積的運算,以及向量減法的幾何意義,配方法求二次函數最值的方法,向量夾角的余弦公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.已知在等差數列{an}中,a1=1,公差d=2,an-1=15,則n等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)n的展開式中,只有第9項的二項式系數最大,則展開式中含x3的項是第幾項( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知數列{an}的前n項和${S_n}={n^2}+2n$,正項等比數列{bn}滿足:b1=a1-1,且b4=2b2+b3
(I)求數列{an}和{bn}的通項公式.
(Ⅱ)若數列{cn}滿足:${c_n}=\frac{a_n}{b_n}$,其前n項和為Tn,證明:$\frac{3}{2}≤{T_n}<5$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知下列命題:
①函數$y=sin({-2x+\frac{π}{3}})$的單調增區間是$[{-kπ-\frac{π}{12},-kπ+\frac{5π}{12}}]({k∈Z})$;
②要得到函數$y=cos(x-\frac{π}{6})$的圖象,需把函數y=sinx的圖象上所有點向左平行移動$\frac{π}{3}$個單位長度;
③函數$f(x)=\sqrt{2}sin(2x+\frac{π}{3})$的圖象關于直線$x=\frac{π}{3}$對稱;
④y=sinωx(ω>0)在[0,1]上至少出現了100次最小值,則$ω≥\frac{399}{2}π$.
其中正確命題的序號是②④(將所有正確命題的序號填上).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.如圖,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,A1C1⊥B1D,BC=1,AD=AA1=3.
(Ⅰ)證明:平面ACD1⊥平面B1BDD1;
(Ⅱ)(1)求點B1到平面ACD1的距離;
(2)求直線B1C1與平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知雙曲線$\frac{x^2}{36}$-$\frac{y^2}{45}$=1,如果此雙曲線右支上一點P與焦點F1的距離為16,則點P與焦點F2的距離為( 。
A.4B.28C.12D.26

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.z=$\frac{5i}{1+2i}$(i是虛數單位),則z的共軛復數為(  )
A.2-iB.2+iC.-2-iD.-2+i

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知平面直角坐標系中的兩點A(-1,0),B(3,2),寫出求線段AB的垂直平分線方程的一個算法.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色毛片在线看 | caoporn国产精品免费公开 | 久久久精品欧美一区二区免费 | 国产精品99精品久久免费 | 狠狠色综合欧美激情 | 国产精品第一国产精品 | 九九热视频在线 | 成人 在线 | 免费日本视频 | 欧美黄a | 精品国产91久久 | 国产成人av一区二区三区 | 中文在线播放 | 搜索黄色毛片 | 亚洲在线观看免费视频 | 欧美一区| 香蕉在线视频免费 | 国产一区日韩在线 | 久草高清| 国产成人免费视频网站视频社区 | 国产91 在线播放 | 久草福利资源 | 久久久久免费精品视频 | 欧产日产国产精品一二 | 亚洲精品一区二区三区麻豆 | 国产视频一区二区 | 日本免费黄色 | 国产一区久久久 | 国产91黄色 | 欧美性网 | 国产精品第一国产精品 | 国产精品久久久久久久久久久久冷 | 亚洲国产精品一区 | 欧美在线a | 国产精品日韩欧美 | 亚洲伦理 | 91无吗 | 色黄视频在线 | 成人三级免费 | 精品国产乱码久久久久久闺蜜 | 日韩在线视频一区 |