【題目】如圖,在四棱錐S-ABCD中,底面ABCD是菱形,,
為等邊三角形,G是線段SB上的一點,且SD//平面GAC.
(1)求證:G為SB的中點;
(2)若F為SC的中點,連接GA,GC,FA,FG,平面SAB⊥平面ABCD,,求三棱錐F-AGC的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中點,動點F是側(cè)面ACC1A1(包括邊界)上一點,若EF//平面BCC1B1,則動點F的軌跡是( )
A.線段B.圓弧
C.橢圓的一部分D.拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的焦點在
軸上.
(1)若橢圓的焦距為1,求橢圓
的方程;
(2)設(shè)分別是橢圓的左、右焦點,
為橢圓
上的第一象限內(nèi)的點,直線
交
軸與點
,并且
,證明:當(dāng)
變化時,點
在某定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)設(shè)x≥1,y≥1,證明x+yxy;
(Ⅱ)1≤a≤b≤c,證明logab+logbc+logca≤logba+logcb+logac.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面多邊形中,AE=ED,AB=BD,且
,現(xiàn)沿直線
,將
折起,得到四棱錐
.
(1)求證: ;
(2)若,求PD與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,
為其焦點,
為其準(zhǔn)線,過
任作一條直線交拋物線于
兩點,
、
分別為
、
在
上的射影,
為
的中點,給出下列命題:
(1);(2)
;(3)
;
(4)與
的交點的
軸上;(5)
與
交于原點.
其中真命題的序號為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且橢圓
的右頂點到直線
的距離為3.
(1)求橢圓的方程;
(2)過點的直線
與橢圓
交于
,
兩點,求
的面積的最大值(
為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為
(其中
為參數(shù)),以原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若點在直線
上,且
,求直線
的斜率;
(2)若,求曲線
上的點到直線
的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com