日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1經過點(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A、B兩點.
(1)求雙曲線C的方程;
(2)若l過原點,P為雙曲線上異于A,B的一點,且直線PA、PB的斜率kPA,kPB均存在,求證:kPA•kPB為定值;
(3)若l過雙曲線的右焦點F1,是否存在x軸上的點M(m,0),使得直線l繞點F1無論怎樣轉動,都有$\overrightarrow{MA}$•$\overrightarrow{MB}$=0成立?若存在,求出M的坐標;若不存在,請說明理由.

分析 (1)利用雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1經過點(2,3),兩條漸近線的夾角為60°,建立方程,即可求雙曲線C的方程;
(2)設M(x0,y0),由雙曲線的對稱性,可得N的坐標,設P(x,y),結合題意,又由M、P在雙曲線上,可得y02=3x02-3,y2=3x2-3,將其坐標代入kPM•kPN中,計算可得答案.
(3)先假設存在定點M,使MA⊥MB恒成立,設出M點坐標,根據數量級為0,求得結論.

解答 (1)解:由題意得 $\left\{\begin{array}{l}{\frac{4}{{a}^{2}}-\frac{9}{{b}^{2}}=1}\\{\frac{b}{a}=\sqrt{3}}\end{array}\right.$                …(2分)
解得a=1,b=$\sqrt{3}$                             …(3分)
∴雙曲線C的方程為${x}^{2}-\frac{{y}^{2}}{3}=1$;              …(4分)
(2)證明:設A(x0,y0),由雙曲線的對稱性,可得B(-x0,-y0).
設P(x,y),…(5分)
則kPA•kPB=$\frac{{y}^{2}-{{y}_{0}}^{2}}{{x}^{2}-{{x}_{0}}^{\;}}$,
∵y02=3x02-3,y2=3x2-3,…(8分)
所以kPA•kPB=$\frac{{y}^{2}-{{y}_{0}}^{2}}{{x}^{2}-{{x}_{0}}^{\;}}$=3                              …(10分)
(3)解:由(1)得點F1為(2,0)
當直線l的斜率存在時,設直線方程y=k(x-2),A(x1,y1),B(x2,y2
將方程y=k(x-2)與雙曲線方程聯立消去y得:(k2-3)x2-4k2x+4k2+3=0,
∴x1+x2=$\frac{4{k}^{2}}{{k}^{2}-3}$,x1x2=$\frac{4{k}^{2}+3}{{k}^{2}-3}$
假設雙曲線C上存在定點M,使MA⊥MB恒成立,設為M(m,n)
則$\overrightarrow{MA}$•$\overrightarrow{MB}$=(x1-m)(x2-m)+[k(x1-2)-n][k(x2-2)-n]
=(k2+1)x1x2-(2k2+kn+m)(x1+x2)+m2+4k2+4kn+n2=$\frac{({m}^{2}+{n}^{2}-4m-5){k}^{2}-12nk-3({m}^{2}+{n}^{2}-1)}{{k}^{2}-3}$=0,
故得:(m2+n2-4m-5)k2-12nk-3(m2+n2-1)=0對任意的k2>3恒成立,
∴$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}-4m-5=0}\\{12n=0}\\{{m}^{2}+{n}^{2}-1=0}\end{array}\right.$,解得m=-1,n=0
∴當點M為(-1,0)時,MA⊥MB恒成立;
當直線l的斜率不存在時,由A(2,3),B(2,-3)知點M(-1,0)使得MA⊥MB也成立.
又因為點(-1,0)是雙曲線C的左頂點,
所以雙曲線C上存在定點M(-1,0),使MA⊥MB恒成立.…(16分)

點評 本題考查點的軌跡方程的求法,考查斜率的計算,考查存在性問題,綜合性強.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.已知圓錐的母線l=10,母線與旋轉軸的夾角α=30°,則圓錐的表面積為75π.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.在某海濱城市附近海面有一臺風,據監測,當前臺風中心位于城市A(看做一點)的東偏南θ角方向$({cosθ=\frac{{\sqrt{2}}}{10}})$,300km的海面P處,并以20km/h的速度向西偏北45°方向移動.臺風侵襲的范圍為圓形區域,當前半徑為60km,并以10km/h的速度不斷增大.
(1)問10小時后,該臺風是否開始侵襲城市A,并說明理由;
(2)城市A受到該臺風侵襲的持續時間為多久?

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.設集合M={x|x2=x},N={x|lgx≤0},則M∩N{1}.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知函數f(x)=$\left\{\begin{array}{l}{\sqrt{-{x}^{2}+4x-3},1≤x≤3}\\{{2}^{x}-8,x>3}\end{array}\right.$,若F(x)=f(x)-kx在其定義域內有3個零點,則實數k∈(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設α∈{$-1,\frac{1}{2},1,2,3$},則使函數y=xα的定義域為R,且該函數為奇函數的α值為(  )
A.1或3B.-1或1C.-1或3D.-1、1或3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知f(x)=2x,且$f(x-1)=\frac{1}{g(x)}+1$(x≠1),則g(x)的值域是(  )
A.(-∞,-1)B.(-∞,-1)∪(0,+∞)C.(-1,+∞)D.(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.設f(x)是定義在(-π,0)∪(0,π)的奇函數,其導函數為f'(x),且$f(\frac{π}{2})=0$,當x∈(0,π)時,f'(x)sinx-f(x)cosx<0,則關于x的不等式$f(x)<2f(\frac{π}{6})sinx$的解集為(  )
A.$(-\frac{π}{6},0)∪(0,\frac{π}{6})$B.$(-\frac{π}{6},0)∪(\frac{π}{6},π)$C.$(-π,-\frac{π}{6})∪(\frac{π}{6},π)$D.$(-π,-\frac{π}{6})∪(0,\frac{π}{6})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=lnx,g(x)=x-$\frac{1}{x}$,F(x)=f(x)-ag(x),其中x>0,a∈R且a>0.
(1)若a=1,求曲線y=F(x)在x=1處的切線方程;
(2)對于任意的x∈[1,+∞),F(x)≤0恒成立,求實數a的取值范圍;
(3)已知數列{an}滿足a1=1,前n項和為Sn,當n≥2且n∈N*時,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{f({n}^{2})}$,求證:Sn≥2-$\frac{2}{(n+1)!}$(n∈N*
(注:n!=n×(n-1)×…3×2×1)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99热精品免费观看牛牛 | 亚洲日韩欧美一区二区在线 | 污网站免费在线 | 青青草视频免费 | 中文在线 | 中文 | 综合久久精品 | 一级免费黄视频 | 国产精品毛片久久久久久 | 欧美八区| 欧美激情视频一区二区三区在线播放 | 久久久久久免费毛片精品 | 国产一区二区三区在线免费观看 | 天天干视频 | 成人毛片视频网站 | 精品1区2区 | 亚洲精品电影 | 高清国产一区 | 国产亚洲一区二区精品 | 一级特黄aaa大片在线观看 | 91精品国产91久久久久久吃药 | 国产美女在线观看精品 | 欧美1区 | 国内在线一区 | 精品久久一区 | 国产综合久久久 | 久久国产一区视频 | 欧美亚洲| 2021最新热播中文字幕-第1页-看片视频 亚洲第一男人天堂 | 91在线精品一区二区 | 美女毛片免费看 | 中文字幕一二三区有限公司 | 在线观看视频一区 | 欧美a在线观看 | 成人免费网站www网站高清 | 日日躁夜夜操 | 一级欧美| 久久综合一区二区三区 | 一级看片 | 成人在线视频网 | 人人看黄色 | 久久久久99 |