設a為實數,函數f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調區間與極值;
(Ⅱ)求證:當a>ln2-1且x>0時,ex>x2-2ax+1.
(Ⅰ)f(x)的單調遞減區間是(-∞,ln2),單調遞增區間是(ln2,+∞),極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a);(Ⅱ)求證:當a>ln2-1且x>0時,ex>x2-2ax+1.
解析試題分析:(Ⅰ)要求函數的單調區間和極值,需要求導,f(x)求導之后的結果f ′(x)=ex-2,令f ′(x)=0,得x=ln2,列出x,f ′(x),f(x)的變化情況表,根據表格寫出函數的單增區間,單減區間,以及極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a),沒有極大值;(Ⅱ)要證明不等式,最常用的方法是構造函數g(x)=ex-x2+2ax-1,求導得g′(x)=ex-2x+2a,由題意,a>ln2-1及(Ⅰ)知,則g′(x)的最小值為g′(ln2)=2(1-ln2+a)>0,因而對任意x∈R,都有g′(x)>0,所以g(x)在R內單調遞增,那么當x∈(0,+∞),必有g(x)>g(0),而g(0)=0,所以ex>x2-2ax+1.
試題解析:(Ⅰ)由f(x)=ex-2x+2a,x∈R知f ′(x)=ex-2,x∈R.
令f ′(x)=0,得x=ln2.
于是當x變化時,f ′(x),f(x)的變化情況如下表:
故f(x)的單調遞減區間是(-∞,ln2),單調遞增區間是(ln2,+∞),f(x)在x=ln2處取得極小值,極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a).x (-∞,ln2) ln2 (ln2,+∞) f ′(x) - 0 + f(x) 單調遞減↘ 2(1-ln2+a) 單調遞增↗
(Ⅱ)設g(x)=ex-x2+2ax-1,x∈R.
于是g′(x)=ex-2x+2a,x∈R.
由(Ⅰ)知,當a>ln2-1時,g′(x)的最小值為g′(ln2)=2(1-ln2+a)>0.
于是對任意x∈R,都有g′(x)>0,
∴g(x)在R內單調遞增.
于是當a>ln2-1時,對任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,從而對任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,故ex>x2-2ax+1.
考點:1.利用導數求出函數單調性及最值;2.根據函數證明不等式.
科目:高中數學 來源: 題型:解答題
若函數為定義域
上的單調函數,且存在區間
(其中
,使得當
時,
的取值范圍恰為
,則稱函數
是
上的正函數,區間
叫做函數的等域區間.
已知是
上的正函數,求
的等域區間;
試探求是否存在,使得函數
是
上的正函數?若存在,請求出實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
在
上為增函數,且
,求解下列各題:
(1)求的取值范圍;
(2)若在
上為單調增函數,求
的取值范圍;
(3)設,若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
在
上為增函數,且
,求解下列各題:
(1)求的取值范圍;
(2)若在
上為單調增函數,求
的取值范圍;
(3)設,若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f (1))處的切線方程;
(2)當a>0時,若f(x)在區間[1,e)上的最小值為-2,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數.
(1)當,
時,求函數
的最大值;
(2)令,其圖象上存在一點
,使此處切線的斜率
,求實數
的取值范圍;
(3)當,
,
時,方程
有唯一實數解,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com