已知函數(shù),
在
上為增函數(shù),且
,求解下列各題:
(1)求的取值范圍;
(2)若在
上為單調(diào)增函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一個
,使得
成立,求
的取值范圍.
(1);(2)
; (3)
解析試題分析:(1)在
上為增函數(shù),則
在
上恒成立,即
在
上恒成立.由于分母恒大于0,故
在
上恒成立,而這只需
的最小值
即可.由此可得
的取值范圍;
(2)在
上為單調(diào)增函數(shù),則其導(dǎo)數(shù)大于等于0在
恒成立,變形得
在
恒成立.與(1)題不同的是,這里不便求
的最小值,故考慮分離參數(shù),即變形為
.這樣只需
大于等于
的最大值即可.而
,所以
;
(3)構(gòu)造新函數(shù)=
,這樣問題轉(zhuǎn)化為:在
上至少存在一個
,使得
成立,求
的取值范圍.而這只要
的最大值大于0即可.
試題解析:(1)∵在
上為增函數(shù)
∴在
上恒成立,即
在
上恒成立
又
∴在
上恒成立 2分
只須,即
,由
有
3分
∴
4分
(2)由(1)問得在
上為單調(diào)增函數(shù)
在
恒成立 6分
∴即
,而
在
恒成立時有
,即函數(shù)
在
上為單調(diào)增函數(shù)時,
的范圍為
; 8分
(3)由(1)問可知,
,可以構(gòu)造新函數(shù)
=
10分
①.當(dāng)時,
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間
上的最大值為
,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現(xiàn)以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數(shù)
的圖象,且點M到邊OA距離為
.
(1)當(dāng)時,求直路
所在的直線方程;
(2)當(dāng)為何值時,地塊OABC在直路
不含泳池那側(cè)的面積取到最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù)函數(shù)
(
為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若≥
對任意的
恒成立,求實數(shù)
的值;
(Ⅲ)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
,
.
(Ⅰ)若的最小值為
,試判斷函數(shù)
的零點個數(shù),并說明理由;
(Ⅱ)若函數(shù)的極小值大于零,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ).求函數(shù)的單調(diào)區(qū)間及
的取值范圍;
(Ⅱ).若函數(shù)有兩個極值點
求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)a>ln2-1且x>0時,ex>x2-2ax+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
為自然對數(shù)的底)
(1)求的最小值;
(2)設(shè)不等式的解集為
,且
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若,對定義域內(nèi)任意x,均有
恒成立,求實數(shù)a的取值范圍?
(Ⅲ)證明:對任意的正整數(shù),
恒成立。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com