【題目】如圖(1),等腰梯形,
,
,
,
、
分別是
的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線
、
折起,使得點(diǎn)
和點(diǎn)
重合,記為點(diǎn)
,如圖(2).
(1)求證:平面平面
;
(2)求平面與平面
所成銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)線面垂直的判定定理,先證明面
,再由面面垂直的判定定理,即可得出結(jié)論成立;
(2)過(guò)作
于
,過(guò)
作BE的平行線交AB于
,得到
面
,又
,EF,
所在直線兩兩垂直,以它們?yōu)檩S建立空間直角坐標(biāo)系,用空間向量的方法,分別求出平面
和平面
的法向量,計(jì)算向量夾角余弦值,即可求出結(jié)果.
(1)因?yàn)?/span>,
是
的兩個(gè)三等分點(diǎn),易知,
是正方形,故
,
又,且
,所以
面
,
又面
,所以面
.
(2)過(guò)作
于
,過(guò)
作BE的平行線交AB于
,則
面
,
又,EF,
所在直線兩兩垂直,以它們?yōu)檩S建立空間直角坐標(biāo)系,
則,
,
,
,
所以,
,
,
,
設(shè)平面的法向量為
,
則,∴
,
,
設(shè)平面的法向量為
,
則,∴
,
,
因此,
所以平面與平面
所成銳二面角的余弦值
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCDA1B1C1D1中,E,F分別為棱AA1,CC1的中點(diǎn),則在空間中與三條直線A1D1,EF,CD都相交的直線( )
A.不存在B.有且只有兩條C.有且只有三條D.有無(wú)數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年9月26日,攜程網(wǎng)發(fā)布《2019國(guó)慶假期旅游出行趨勢(shì)預(yù)測(cè)報(bào)告》,2018年國(guó)慶假日期間,西安共接待游客1692.56萬(wàn)人次,今年國(guó)慶有望超過(guò)2000萬(wàn)人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導(dǎo)游接待旅客,旅游年總收人不低于40(單位:萬(wàn)元),則稱該導(dǎo)游為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游40名,統(tǒng)計(jì)他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:
(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(2)求甲公司一年內(nèi)導(dǎo)游旅游總收入的中位數(shù),乙公司一年內(nèi)導(dǎo)游旅游總收入的平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,
,分別從
,
中各取2個(gè)不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個(gè)數(shù)是________(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線
上的任意一點(diǎn)
到直線
的距離比
點(diǎn)到點(diǎn)
的距離小1.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)若點(diǎn)是圓
上一動(dòng)點(diǎn),過(guò)點(diǎn)
作曲線
的兩條切線,切點(diǎn)分別為
,求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個(gè)偶數(shù)2,4;再取4后面最鄰近的3個(gè)連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個(gè)連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個(gè)新數(shù)列1,2,4,5,7,9,10,12,14,16,17,…,則在這個(gè)新數(shù)列中,由1開始的第2 019個(gè)數(shù)是( )
A. 3 971B. 3 972C. 3 973D. 3 974
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次運(yùn)動(dòng)會(huì)上,某單位派出了由6名主力隊(duì)員和5名替補(bǔ)隊(duì)員組成的代表隊(duì)參加比賽.
(1)如果隨機(jī)抽派5名隊(duì)員上場(chǎng)比賽,將主力隊(duì)員參加比賽的人數(shù)記為,求隨機(jī)變量
的數(shù)學(xué)期望;
(2)若主力隊(duì)員中有2名隊(duì)員在練習(xí)比賽中受輕傷,不宜同時(shí)上場(chǎng);替補(bǔ)隊(duì)員中有2名隊(duì)員身材相對(duì)矮小,也不宜同時(shí)上場(chǎng),那么為了場(chǎng)上參加比賽的5名隊(duì)員中至少有3名主力隊(duì)員,教練員有多少種組隊(duì)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
的右焦點(diǎn)為
,離心率為
,過(guò)點(diǎn)
的直線
與
相交于
兩點(diǎn),點(diǎn)
為線段
的中點(diǎn).
(1)當(dāng)的傾斜角為
時(shí),求直線
的方程;
(2)試探究在軸上是否存在定點(diǎn)
,使得
為定值?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(Ⅰ)寫出直線的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過(guò)曲線
的焦點(diǎn)
且與曲線
相交于
兩點(diǎn),設(shè)線段
的中點(diǎn)為
,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com