如圖,橢圓的左頂點為
,
是橢圓
上異于點
的任意一點,點
與點
關于點
對稱.
(1)若點的坐標為
,求
的值;
(2)若橢圓上存在點
,使得
,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知A(-5,0),B(5,0),動點P滿足||,
|
|,8成等差數列.
(1)求P點的軌跡方程;
(2)對于x軸上的點M,若滿足||·|
|=
,則稱點M為點P對應的“比例點”.問:對任意一個確定的點P,它總能對應幾個“比例點”?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為
(
)的直線
與橢圓
相交于
兩點,直線
、
分別交直線
于
、
兩點,線段
的中點為
.記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知△ABC中, 點A,B的坐標分別為A(-,0),B(
,0)點C在x軸上方.
(Ⅰ)若點C坐標為(,1),求以A,B為焦點且經過點C的橢圓的方程:
(Ⅱ)過點P(m,0)作傾斜角為的直線l交(1)中曲線于M,N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線的焦點為F
過點
的直線交拋物線于A
,B
兩點,直線AF,BF分別與拋物線交于點M,N
(1)求的值;
(2)記直線MN的斜率為,直線AB的斜率為
證明:
為定值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,焦距為
,且經過點
,直線
交橢圓于不同的兩點A,B.
(1)求的取值范圍;,
(2)若直線不經過點
,求證:直線
的斜率互為相反數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C過點,兩個焦點為
.
(1)求橢圓C的方程;
(2) 是橢圓C上的兩個動點,如果直線
的斜率與
的斜率互為相反數,證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓
的左焦點為
,且橢圓
的離心率
.
(1)求橢圓的方程;
(2)設橢圓的上下頂點分別為
,
是橢圓
上異于
的任一點,直線
分別交
軸于點
,證明:
為定值,并求出該定值;
(3)在橢圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com