分析 (1)求得f(x)的導數,可得x=1處切線的斜率,由兩直線平行的條件:斜率相等,解方程即可得到所求值.
(2)令$h(x)=f(x)-g(x)=(x+1)lnx-\frac{x^2}{e^x}$,x∈(1,2),由$h(1)=-\frac{1}{e}<0$,$h(2)=3ln2-\frac{4}{e^2}>0$,可得函數h(x)在(1,2)內一定有零點,進而證明h′(x)>0,可得h(x)在(1,2)上單調遞增,即可得證.
解答 (本題滿分為12分)
解:(1)$f'(x)=lnx+\frac{a}{x}+1$,
由題意知,曲線y=f(x)在點(1,f(1))處的切線斜率為2,
則f'(1)=2,
所以a+1=2,解得a=1.…(4分)
(2)令$h(x)=f(x)-g(x)=(x+1)lnx-\frac{x^2}{e^x}$,x∈(1,2),
則$h(1)=-\frac{1}{e}<0$,$h(2)=3ln2-\frac{4}{e^2}>0$,
所以h(1)h(2)<0,
所以函數h(x)在(1,2)內一定有零點,…(8分)
可得$h'(x)=lnx+\frac{x+1}{x}-\frac{{2x-{x^2}{e^x}}}{{{{({e^x})}^2}}}=lnx+\frac{1}{x}+1-\frac{{-{{(x-1)}^2}+1}}{e^x}>1-\frac{1}{e}>0$,
∴h(x)在(1,2)上單調遞增,
所以函數h(x)在(1,2)內有且只有一個零點,
即方程f(x)=g(x)在(1,2)內有且只有一個實根.…(12分)
點評 本題考查導數的運用:求切線的斜率,考查兩直線平行的條件:斜率相等,考查函數的零點判定定理,正確求導是解題的關鍵,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 | 7 |
y | 4 | 2.5 | -0.5 | 0.5 | -2 |
A. | 增加0.9個單位 | B. | 減少0.9個單位 | C. | 增加1個單位 | D. | 減少1個單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com