分析 (1)化不等式兩邊為以5為底數,在轉化為一元一次不等式求解;
(2)化不等式兩邊為以0.2為底數,在轉化為一元一次不等式求解;
(3)把兩邊取以5為底數的對數得答案.
解答 解:(1)由5x<0.2=5-1,得x<-1,
∴不等式5x<0.2的解集為(-∞,-1);
(2)由log0.2(x-2)>1=log0.20.2,得0<x-2<0.2,即2<x<2.2.
∴不等式log0.2(x-2)>1的解集為(2,2.2);
(3)由5x+2>2,得x+2>log52,∴x>log52-2,
∴不等式5x+2>2的解集為(log52-2,+∞).
點評 本題考查指數不等式與對數不等式的解法,考查數學轉化思想方法,是基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (x+3)2+(y+4)2=1 | B. | (x-4)2+(y+3)2=1 | C. | (x+4)2+(y-3)2=1 | D. | (x-3)2+(y-4)2=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com