分析 (1)求出函數的導數,求出f(x)的最大值,從而求出|f(x)|的最小值,設G(x)=$\frac{lnx}{x}$,根據函數的單調性證明即可;
(2)問題轉化為比較ln$\frac{m}{n}$與$\frac{\frac{m}{n}-1}{\frac{n}{m}+\frac{m}{n}}$的大小,令t=$\frac{m}{n}$(t>1),作差設G(t)=lnt-$\frac{t-1}{t+\frac{1}{t}}$=lnt-$\frac{t(t-1)}{{t}^{2}+1}$,根據函數的單調性求出G(t)>0,從而比較其大小即可.
解答 (1)證明:因為f′(x)=$\frac{1-x}{x}$,故f(x)在(0,1)上是增加的,在(1,+∞)上是減少的,
f(x)max=f(1)=ln1-1=-1,|f(x)|min=1,
設G(x)=$\frac{lnx}{x}$,則G′(x)=$\frac{1-lnx}{{x}^{2}}$,
故G(x)在(0,e)上是增加的,在(e,+∞)上是減少的,故G(x)max=G(e)=$\frac{1}{e}$<1,
G(x)max<|f(x)|min,
所以|f(x1)|>$\frac{l{nx}_{2}}{{x}_{2}}$對任意的x1,x2∈(0,+∞)恒成立;
(2)解:$\frac{f(m)-f(n)+m-n}{m-n}$=$\frac{lnm-lnn}{m-n}$=$\frac{1}{n}$•$\frac{ln\frac{m}{n}}{\frac{m}{n}-1}$,且$\frac{m}{{m}^{2}{+n}^{2}}$=$\frac{1}{n}$×$\frac{1}{\frac{n}{m}+\frac{m}{n}}$,
∵m>n>0,∴$\frac{m}{n}$-1>0,故只需比較ln$\frac{m}{n}$與$\frac{\frac{m}{n}-1}{\frac{n}{m}+\frac{m}{n}}$的大小,
令t=$\frac{m}{n}$(t>1),設G(t)=lnt-$\frac{t-1}{t+\frac{1}{t}}$=lnt-$\frac{t(t-1)}{{t}^{2}+1}$,
則G′(t)=$\frac{1}{t}$-$\frac{{t}^{2}+2t-1}{{{(t}^{2}+1)}^{2}}$=$\frac{{t}^{3}(t-1)+t+1}{{t{(t}^{2}+1)}^{2}}$,
因為t>1,所以G′(t)>0,所以函數G(t)在(1,+∞)上是增加的,
故G(t)>G(1)=0,所以G(t)>0對任意t>1恒成立,
即ln$\frac{m}{n}$>$\frac{\frac{m}{n}-1}{\frac{n}{m}+\frac{m}{n}}$,
從而有$\frac{f(m)+m-(f(n)+n)}{m-n}$>$\frac{m}{{m}^{2}{+n}^{2}}$.
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,是一道綜合題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{15}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {-2,-1,1,2} | C. | {-2,-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}-{y}^{2}$=1 | B. | $\frac{{x}^{2}}{3}-\frac{{y}^{2}}{2}$=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{4\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com