分析 (1)把直線參數方程中的參數t消去,即可得到直線l的普通方程,把x=ρcosθ,y=ρsinθ代入曲線C的極坐標方程化直角坐標方程;
(2)將直線的參數方程代入曲線C的直角坐標方程,利用根與系數的關系結合t的幾何意義求得|AB|的最小值.
解答 解:(1)由$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$,消去t得l的普通方程xcosφ-ysinφ+sinφ=0,
由ρsin2θ=4cosθ,得(ρsinθ)2=4ρcosθ,
把x=ρcosθ,y=ρsinθ代入上式,得y2=4x,
∴曲線C的直角坐標方程為x2=4y;
(2)將直線l的參數方程代入y2=4x,得t2sin2φ-4tcosφ-4=0,
設A、B兩點對應的參數分別為t1,t2,
則${t}_{1}+{t}_{2}=\frac{4cosφ}{si{n}^{2}φ}$,${t}_{1}{t}_{2}=\frac{-4}{si{n}^{2}φ}$.
∴|AB|=$|{t}_{1}-{t}_{2}|=\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{4}{si{n}^{2}φ}$.
當φ=$\frac{π}{2}$時,即sin2φ=1,|AB|的最小值為4.
點評 本題考查參數方程化普通方程,考查直線參數方程中參數幾何意義的應用,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,3] | B. | [9,+∞) | C. | (-∞,9] | D. | (-∞,9) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若y=3,則y'=0 | B. | 若$y=\frac{1}{{\sqrt{x}}}$,則$y'=-\frac{{\sqrt{x}}}{2}$ | C. | 若$y=\sqrt{x}$,則$y'=\frac{1}{{2\sqrt{x}}}$ | D. | 若y=x,則y'=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{2}{11}$ | B. | $\frac{2}{11}$ | C. | $\frac{11}{2}$ | D. | -$\frac{11}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com