分析 (1)設(shè)數(shù)列{bn}是“階梯數(shù)列”,且b1=1,b2n+1=9b2n-1(n∈N*),b2016=b2015,再利用等比數(shù)列的通項公式即可得出.
(2)由數(shù)列{cn}是“階梯數(shù)列”,可得c2n-1=c2n.即可得出S2n-1-S2n-2=S2n-S2n-1,即可證明{Sn}中存在連續(xù)三項成等差數(shù)列.假設(shè){Sn}中存在連續(xù)四項成等差數(shù).Sn+1-Sn=Sn+2-Sn+1=Sn+3-Sn+2,可得an+1=an+2=an+3,得出矛盾.
(3)設(shè)數(shù)列{dn}是“階梯數(shù)列”,且d1=1,d2n+1=d2n-1+2(n∈N*),利用等差數(shù)列的通項公式可得:d2n-1=2n-1=d2n.$\frac{1}{p9vv5xb5_{2n}p9vv5xb5_{2n+1}}$=$\frac{1}{p9vv5xb5_{2n-1}p9vv5xb5_{2n+1}}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.n=2k(k∈N*)時,Tn=T2k=$(\frac{1}{p9vv5xb5_{1}p9vv5xb5_{3}}+\frac{1}{p9vv5xb5_{2}p9vv5xb5_{4}})$+$(\frac{1}{p9vv5xb5_{3}p9vv5xb5_{5}}+\frac{1}{p9vv5xb5_{4}p9vv5xb5_{6}})$+…+$(\frac{1}{p9vv5xb5_{2k-1}p9vv5xb5_{2k+1}}+\frac{1}{p9vv5xb5_{2k}p9vv5xb5_{2k+2}})$=2$(\frac{1}{p9vv5xb5_{1}p9vv5xb5_{3}}+\frac{1}{p9vv5xb5_{3}p9vv5xb5_{5}}+…\frac{1}{p9vv5xb5_{2k-1}p9vv5xb5_{2k+1}})$,利用“裂項求和”及其數(shù)列的單調(diào)性可得Tn∈$[\frac{2}{3},1)$,由(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0,可得$-\frac{1}{{T}_{n}}$<t<Tn.n=2k-1(k∈N*)時,Tn=T2k-$\frac{1}{p9vv5xb5_{2k}p9vv5xb5_{2k+2}}$=T2k-$\frac{1}{p9vv5xb5_{2k-1}p9vv5xb5_{2k+1}}$,同理可得.
解答 (1)解:設(shè)數(shù)列{bn}是“階梯數(shù)列”,且b1=1,b2n+1=9b2n-1(n∈N*),
∴數(shù)列{b2n-1}是等比數(shù)列,首項為1,公比為9.
∴b2016=b2015=b2×1008-1=1×91008-1=91007=32014.
(2)證明:∵數(shù)列{cn}是“階梯數(shù)列”,∴c2n-1=c2n.
∴S2n-1-S2n-2=S2n-S2n-1,因此{Sn}中存在連續(xù)三項成等差數(shù)列.
假設(shè){Sn}中存在連續(xù)四項成等差數(shù).∴Sn+1-Sn=Sn+2-Sn+1=Sn+3-Sn+2,
∴an+1=an+2=an+3,
n=2k-1時,a2k=a2k+1=a2k+2,與數(shù)列{cn}是“階梯數(shù)列”矛盾;
同理n=2k時,也得出矛盾.
(3)解:設(shè)數(shù)列{dn}是“階梯數(shù)列”,且d1=1,d2n+1=d2n-1+2(n∈N*),
∴數(shù)列{d2n-1}是等差數(shù)列,公差為2,首項為1.
∴d2n-1=1+2(n-1)=2n-1=d2n.
$\frac{1}{p9vv5xb5_{2n}p9vv5xb5_{2n+1}}$=$\frac{1}{p9vv5xb5_{2n-1}p9vv5xb5_{2n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
n=2k(k∈N*)時,Tn=T2k=$(\frac{1}{p9vv5xb5_{1}p9vv5xb5_{3}}+\frac{1}{p9vv5xb5_{2}p9vv5xb5_{4}})$+$(\frac{1}{p9vv5xb5_{3}p9vv5xb5_{5}}+\frac{1}{p9vv5xb5_{4}p9vv5xb5_{6}})$+…+$(\frac{1}{p9vv5xb5_{2k-1}p9vv5xb5_{2k+1}}+\frac{1}{p9vv5xb5_{2k}p9vv5xb5_{2k+2}})$
=2$(\frac{1}{p9vv5xb5_{1}p9vv5xb5_{3}}+\frac{1}{p9vv5xb5_{3}p9vv5xb5_{5}}+…\frac{1}{p9vv5xb5_{2k-1}p9vv5xb5_{2k+1}})$
=2×$\frac{1}{2}$×$(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2k-1}-\frac{1}{2k+1})$
=1-$\frac{1}{2k+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
∴Tn∈$[\frac{2}{3},1)$,$-\frac{1}{{T}_{n}}$∈$[-\frac{3}{2},-1)$.
∴(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0,
∴$-\frac{1}{{T}_{n}}$<t<Tn,解得-1≤t$<\frac{2}{3}$.①
n=2k-1(k∈N*)時,Tn=T2k-$\frac{1}{p9vv5xb5_{2k}p9vv5xb5_{2k+2}}$=T2k-$\frac{1}{p9vv5xb5_{2k-1}p9vv5xb5_{2k+1}}$
=1-$\frac{1}{2k+1}$-$\frac{1}{2}$(12k-1-12k+1)=1-$\frac{1}{2}(\frac{1}{2k-1}+\frac{1}{2k+1})$∈$[\frac{1}{3},1)$,
∴$-\frac{1}{{T}_{n}}$∈[-3,-1).
∴(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0,
∴$-\frac{1}{{T}_{n}}$<t<Tn,∴-1≤t$<\frac{1}{3}$.②.
由①②可得:實數(shù)t的取值范圍是-1≤t$<\frac{1}{3}$.
點評 本題考查了新定義、等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、“裂項求和方法”、不等式的解法,考查了反證法、分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -4$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com