【題目】已知函數,其中實數
.
(1)當時,求不等式
的解集;
(2)若不等式的解集為
,求
的值.
【答案】(1)不等式的解集為
;(2)
【解析】試題(1)將代入
得一絕對值不等式:
,解此不等式即可.
(2)含絕對值的不等式,一般都去掉絕對值符號求解。本題有以下三種考慮:
思路一、根據的符號去絕對值.
時,
,所以原不等式轉化為
;
時,
,所以原不等式轉化為
思路二、利用去絕對值.
,此不等式化等價于
.
思路三、從不等式與方程的關系的角度突破.本題是含等號的不等式,所以可取等號從方程入手.
試題解析:(1)當時,
可化為
,由此可得
或
故不等式的解集為
5分
(2)法一:(從去絕對值的角度考慮)
由,得
,此不等式化等價于
或
解之得或
,
因為,所以不等式組的解集為
,由題設可得
,故
10分
法二:(從等價轉化角度考慮)
由,得
,此不等式化等價于
,
即為不等式組,解得
,
因為,所以不等式組的解集為
,由題設可得
,故
10分
法三:(從不等式與方程的關系角度突破)
因為是不等式
的解集,所以
是方程
的根,
把代入
得
,因為
,所以
10分
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,曲線
:
(
,
為參數).在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,曲線
:
.
(1)說明是哪一種曲線,并將
的方程化為極坐標方程;
(2)若直線的方程為
,設
與
的交點為
,
,
與
的交點為
,
,若
的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校為增加應屆畢業生就業機會,每年根據應屆畢業生的綜合素質和學業成績對學生進行綜合評估,已知某年度參與評估的畢業生共有2000名,其評估成績近似的服從正態分布
.現隨機抽取了100名畢業生的評估成績作為樣本,并把樣本數據進行了分組,繪制了頻率分布直方圖:
(1)求樣本平均數和樣本方差
(同一組中的數據用該組區間的中點值作代表);
(2)若學校規定評估成績超過分的畢業生可參加
三家公司的面試.
(ⅰ)用樣本平均數作為
的估計值
,用樣本標準差
作為
的估計值
,請利用估計值判斷這2000名畢業生中,能夠參加三家公司面試的人數;
(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李華同學取得了三個公司的面試機會,經過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準備依次從
三家公司進行面試選崗,公司規定:面試成功必須當場選崗,且只有一次機會.李華在某公司選崗時,若以該崗位工資與未進行面試公司的工資期望作為抉擇依據,問李華可以選擇
公司的哪些崗位?
并說明理由.
附:,若隨機變量
,
則.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
分別為其左、右焦點,
為橢圓
上一點,且
的周長為
.
(1)求橢圓的方程;
(2)過點作關于軸
對稱的兩條不同的直線
,若直線
交橢圓
于一點
,直線
交橢圓
于一點
,證明:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點和橢圓
. 直線
與橢圓
交于不同的兩點
.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當時,求
的面積;
(Ⅲ)設直線與橢圓
的另一個交點為
,當
為
中點時,求
的值 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
.數列
滿足
,
.
(1)若,且
,求正整數
的值;
(2)若數列,
均是等差數列,求
的取值范圍;
(3)若數列是等比數列,公比為
,且
,是否存在正整數
,使
,
,
成等差數列,若存在,求出一個
的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com