A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
分析 對不等式整理得出k>$\frac{2ln(x+1)}{sinx}$,構造函數得出右式恒小于2.結合充分條件和必要條件的概念判斷即可.
解答 解:ksin$\frac{x}{2}$cos$\frac{x}{2}$>ln(x+1),即為$\frac{k}{2}$sinx>ln(x+1),
∵x∈(0,$\frac{π}{2}$),
∴0<sinx<1,
∴k>$\frac{2ln(x+1)}{sinx}$,
設f(x)=$\frac{2ln(x+1)}{sinx}$,顯然函數遞增,
則f($\frac{π}{2}$)=2ln($\frac{π}{2}$+1)<2,
故由k≥2一定能得出ksin$\frac{x}{2}$cos$\frac{x}{2}$>ln(x+1),反之不成立,
故選B.
點評 本題考查充要條件的判斷與應用,三角函數線的應用,考查邏輯推理能力.
科目:高中數學 來源: 題型:選擇題
A. | $(-2\sqrt{2},2\sqrt{2})$ | B. | (-2,2) | C. | (-1,1) | D. | $(-\sqrt{3},\sqrt{3})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{10}$=1 | B. | $\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{15}$=1 | C. | $\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1 | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{10}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com