定義在上的函數(shù)
,如果對任意
,恒有
(
,
)成立,則稱
為
階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)
時,
,求
的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)
時,
,求證:函數(shù)
在
上無零點;
(3)已知函數(shù)為
階縮放函數(shù),且當(dāng)
時,
的取值范圍是
,求
在
(
)上的取值范圍.
(1)1;(2)詳見解析;(3).
解析試題分析:(1) 本小題首先利用函數(shù)為二階縮放函數(shù),所以
,于是由
得,
,由題中條件得
;
(2)本小題首先對(
)時,
,得到
,方程
或
,
與
均不屬于
,當(dāng)
(
)時,方程
無實數(shù)解;
(3)本小題針對,
時,有
,依題意可得
,然后通過分析可得取值范圍為
.
試題解析:(1)由得,
2分
由題中條件得 4分
(2)當(dāng)(
)時,
,依題意可得:
6分
方程或
,
與
均不屬于
8分
當(dāng)(
)時,方程
無實數(shù)解。
注意到
所以函數(shù)在
上無零點。 10分
(3)當(dāng),
時,有
,依題意可得:
當(dāng)時,
的取值范圍是
12分
所以當(dāng),
時,
的取值范圍是
。 14分
由于 16分
所以函數(shù)在
(
)上的取值范圍是:
。 18分
考點:1.新定義;2.函數(shù)的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+(a、b是正常數(shù))在區(qū)間
和
上的單調(diào)性(只需寫出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
)
(1)求的定義域;
(2)問是否存在實數(shù)、
,當(dāng)
時,
的值域為
,且
若存在,求出
、
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)
時,車流速度
是車流密度x的一次函數(shù).
(1)當(dāng)時,求函數(shù)
的表達(dá)式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀點的車輛數(shù),單位:輛/每小時)
可以達(dá)到最大,并求出最大值(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
且
,
且
.
(1) 如果實數(shù)滿足
且
,函數(shù)
是否具有奇偶性? 如果有,求出相應(yīng)的
值;如果沒有,說明原因;
(2) 如果,討論函數(shù)
的單調(diào)性。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com