日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.設n∈N*,n≥3,k∈N*
(1)求值:
①kCnk-nCn-1k-1
②k2Cnk-n(n-1)Cn-2k-2-nCn-1k-1(k≥2);
(2)化簡:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

分析 (1)利用組合數的計算公式即可得出.
(2)方法一:由(1)可知當k≥2時${({k+1})^2}C_n^k=({{k^2}+2k+1})C_n^k={k^2}C_n^k+2kC_n^k+C_n^k$=$[{n({n-1})C_{n-2}^{k-2}+nC_{n-1}^{k-1}}]+2nC_{n-1}^{k-1}+C_n^k=n({n-1})C_{n-2}^{k-2}+3nC_{n-1}^{k-1}+C_n^k$.代入化簡即可得出.
方法二:當n≥3時,由二項式定理,有${({1+x})^n}=1+C_n^1x+C_n^2{x^2}+…+C_n^k{x^k}+…+C_n^n{x^n}$,
兩邊同乘以x,得${({1+x})^n}x=x+C_n^1{x^2}+C_n^2{x^3}+…+C_n^k{x^{k+1}}+…+C_n^n{x^{n+1}}$,
兩邊對x求導,得${({1+x})^n}+n{({1+x})^{n-1}}x=1+2C_n^1x+3C_n^2{x^2}+…+({k+1})C_n^k{x^k}+…+({n+1})C_n^n{x^n}$,兩邊再同乘以x,得${({1+x})^n}x+n{({1+x})^{n-1}}{x^2}=x+2C_n^1{x^2}+3C_n^2{x^3}+…+({k+1})C_n^k{x^{k+1}}+…+({n+1})C_n^n{x^{n+1}}$,
兩邊再對x求導,得(1+x)n+n(1+x)n-1x+n(n-1)(1+x)n-2x2+2n(1+x)n-1x=$1+{2^2}C_n^1x+{3^2}C_n^2{x^2}+…+{({k+1})^2}C_n^k{x^k}+…+{({n+1})^2}C_n^n{x^n}$.
令x=1,即可得出.

解答 解:(1)①$kC_n^k-nC_{n-1}^{k-1}=k×\frac{n!}{{k!({n-k})!}}-n×\frac{{({n-1})!}}{{({k-1})!({n-k})!}}$=$\frac{n!}{{({k-1})!({n-k})!}}-\frac{n!}{{({k-1})!({n-k})!}}=0$.…(2分)
②${k^2}C_n^k-n({n-1})C_{n-2}^{k-2}-nC_{n-1}^{k-1}={k^2}×\frac{n!}{{k!({n-k})!}}-n({n-1})×\frac{{({n-2})!}}{{({k-2})!({n-k})!}}$$-n×\frac{{({n-1})!}}{{({k-1})!({n-k})!}}$=$k×\frac{n!}{{({k-1})!({n-k})!}}-\frac{n!}{{({k-2})!({n-k})!}}-\frac{n!}{{({k-1})!({n-k})!}}$=$\frac{n!}{{({k-2})!({n-k})!}}({\frac{k}{k-1}-1-\frac{1}{k-1}})=0$.…(4分)
(2)方法一:由(1)可知當k≥2時${({k+1})^2}C_n^k=({{k^2}+2k+1})C_n^k={k^2}C_n^k+2kC_n^k+C_n^k$=$[{n({n-1})C_{n-2}^{k-2}+nC_{n-1}^{k-1}}]+2nC_{n-1}^{k-1}+C_n^k=n({n-1})C_{n-2}^{k-2}+3nC_{n-1}^{k-1}+C_n^k$.(6分)
故${1^2}C_n^0+{2^2}C_n^1+{3^2}C_n^2+…+{({k+1})^2}C_n^k+…+{({n+1})^2}C_n^n$=$({{1^2}C_n^0+{2^2}C_n^1})+n({n-1})({C_{n-2}^0+C_{n-2}^1+…+C_{n-2}^{n-2}})+3n({C_{n-1}^1+C_{n-1}^2+…+C_{n-1}^{n-1}})$$+({C_n^2+C_n^3+…+C_n^n})$=(1+4n)+n(n-1)2n-2+3n(2n-1-1)+(2n-1-n)=2n-2(n2+5n+4).…(10分)
方法二:當n≥3時,由二項式定理,有${({1+x})^n}=1+C_n^1x+C_n^2{x^2}+…+C_n^k{x^k}+…+C_n^n{x^n}$,
兩邊同乘以x,得${({1+x})^n}x=x+C_n^1{x^2}+C_n^2{x^3}+…+C_n^k{x^{k+1}}+…+C_n^n{x^{n+1}}$,
兩邊對x求導,得${({1+x})^n}+n{({1+x})^{n-1}}x=1+2C_n^1x+3C_n^2{x^2}+…+({k+1})C_n^k{x^k}+…+({n+1})C_n^n{x^n}$,…(6分)
兩邊再同乘以x,得${({1+x})^n}x+n{({1+x})^{n-1}}{x^2}=x+2C_n^1{x^2}+3C_n^2{x^3}+…+({k+1})C_n^k{x^{k+1}}+…+({n+1})C_n^n{x^{n+1}}$,
兩邊再對x求導,得(1+x)n+n(1+x)n-1x+n(n-1)(1+x)n-2x2+2n(1+x)n-1x=$1+{2^2}C_n^1x+{3^2}C_n^2{x^2}+…+{({k+1})^2}C_n^k{x^k}+…+{({n+1})^2}C_n^n{x^n}$.…(8分)
令x=1,得2n+n2n-1+n(n-1)2n-2+2n2n-1=$1+{2^2}C_n^1+{3^2}C_n^2+…+{({k+1})^2}C_n^k+…+{({n+1})^2}C_n^n$,
即${1^2}C_n^0+{2^2}C_n^1+{3^2}C_n^2+…+{({k+1})^2}C_n^k+…+{({n+1})^2}C_n^n$=2n-2(n2+5n+4).…(10分)

點評 本題考查了組合數的計算公式及其性質、利用導數的運算法則化簡證明,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

18.已知函數y=f(x)是奇函數.若當x>0時,f(x)=x+lgx,則當x<0時,f(x)=x-lg(-x).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
(Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.將函數$y=3sin(2x+\frac{π}{3})$的圖象向右平移φ($0<φ<\frac{π}{2}$)個單位后,所得函數為偶函數,則φ=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.若存在常數k(k∈N*,k≥2)、q、d,使得無窮數列{an}滿足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$則稱數列{an}為“段比差數列”,其中常數k、q、d分別叫做段長、段比、段差.設數列{bn}為“段比差數列”.
(1)若{bn}的首項、段長、段比、段差分別為1、3、q、3.
①當q=0時,求b2016
②當q=1時,設{bn}的前3n項和為S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$對n∈N*恒成立,求實數λ的取值范圍;
(2)設{bn}為等比數列,且首項為b,試寫出所有滿足條件的{bn},并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知F1,F2分別是雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的兩個焦點,過其中一個焦點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓內,則雙曲線離心率的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知定點Q($\sqrt{3}$,0),P為圓N:${(x+\sqrt{3})^2}+{y^2}=24$上任意一點,線段QP的垂直平分線交NP于點M.
(Ⅰ)當P點在圓周上運動時,求點M (x,y) 的軌跡C的方程;
(Ⅱ)若直線l與曲線C交于A、B兩點,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,求證:直線l與某個定圓E相切,并求出定圓E的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知f(x)=log3x,f(a)>f(2),那么a的取值范圍是(  )
A.{a|a>2}B.{a|1<a<2}C.$\{a|a>\frac{1}{2}\}$D.$\{a|\frac{1}{2}<a<1\}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知集合A={x∈Z|x≥2},B={x|(x-1)(x-3)<0},則A∩B=(  )
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中国产一级毛片 | 中文精品在线 | 久久国产精品久久久久久 | 久久亚洲一区 | a在线免费 | 黄色大片网站在线观看 | 国产一区二区三区久久 | 国产一区二区欧美 | 日韩精品一区二区三区在线播放 | 五月激情综合 | 成人午夜免费视频 | 亚洲二区在线视频 | 日韩亚洲欧美在线观看 | 色精品 | 国产一区不卡 | 五月婷在线视频 | 色综合激情| 欧美一区二区 | 成人在线播放 | 欧美电影一区二区 | 亚洲成人免费在线观看 | 久久久www| 精品国产乱码久久久久久丨区2区 | 亚洲三级av | 国产精品久久久久永久免费观看 | 国产精品一区二区日韩新区 | 日本一区二区不卡 | 免费大黄网站 | 色婷婷亚洲国产女人的天堂 | 欧美精品一区二区久久 | 91精品国产91久久久久久久久久久久 | 久久99精品国产 | 日韩一区二区三区免费 | 亚洲视频在线观看免费 | 一区二区三区精品视频 | www.一区二区 | 欧美午夜视频 | 日本亚洲国产一区二区三区 | 亚洲综合福利视频 | 天天干天天插 | 亚洲成人网络 |