日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

14.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,側(cè)面PAD同時垂直側(cè)面PAB與側(cè)面PDC.若PA=AB=AD=$\frac{{\sqrt{3}}}{3}$PB,則$\frac{BC}{AD}$=$\frac{3}{2}$,直線PC與底面ABCD所成角的正切值為$\frac{\sqrt{6}}{6}$.

分析 延長BA,CD交于H,連接PH,運(yùn)用面面垂直的性質(zhì)定理,可得PH⊥平面PAD,設(shè)PB=$\sqrt{3}$,可得PA=AB=AD=1,運(yùn)用余弦定理可得∠PAB,在直角三角形HPA中,∠HAP=60°,求得AH,由三角形相似知識,可得$\frac{BC}{AD}$;
求出HP,HD,PD,PC,證得AD⊥PA,又AD⊥AB,AB∩PA=A,即有AD⊥平面PAB,可得BC⊥平面PAB,設(shè)P到平面ABCD的距離為d,由VP-ABC=VC-PAB,運(yùn)用三棱錐的體積公式,求得d,運(yùn)用同角三角函數(shù)的關(guān)系,可得直線PC與底面ABCD所成角的正切值.

解答 解:延長BA,CD交于H,連接PH,
可得平面PAB∩平面PCD=PH,
由側(cè)面PAD同時垂直側(cè)面PAB與側(cè)面PDC,
運(yùn)用面面垂直的性質(zhì)定理,可得PH⊥平面PAD,
即有HP⊥PA,
設(shè)PB=$\sqrt{3}$,
由PA=AB=AD=$\frac{{\sqrt{3}}}{3}$PB,可得PA=AB=AD=1,
在△PAB中,由余弦定理可得,cos∠PAB=$\frac{1+1-3}{2×1×1}$=-$\frac{1}{2}$,
即有∠PAB=120°,
在直角三角形HPA中,∠HAP=60°,
可得AH=$\frac{AP}{cos∠HAP}$=$\frac{1}{cos60°}$=2,
在三角形HBC中,由三角形的相似知識可得,$\frac{BC}{AD}$=$\frac{HB}{HA}$=$\frac{3}{2}$;
在△HPA中,HP=APtan60°=$\sqrt{3}$,
在直角三角形AHD中,HD=$\sqrt{A{H}^{2}+A{D}^{2}}$=$\sqrt{4+1}$=$\sqrt{5}$,
在直角三角形HPD中,PD=$\sqrt{H{D}^{2}-H{P}^{2}}$=$\sqrt{5-3}$=$\sqrt{2}$,
PA2+AD2=PD2,可得AD⊥PA,
又AD⊥AB,AB∩PA=A,
即有AD⊥平面PAB,
由BC∥AD,可得BC⊥平面PAB,
設(shè)P到平面ABCD的距離為d,
由VP-ABC=VC-PAB,可得$\frac{1}{3}$d•S△ABC=$\frac{1}{3}$BC•S△PAB
即$\frac{1}{3}$d•$\frac{1}{2}$•1•$\frac{3}{2}$=$\frac{1}{3}$•$\frac{3}{2}$•$\frac{1}{2}$•1•1•sin120°,
解得d=$\frac{\sqrt{3}}{2}$,
在直角三角形BCP中,PC=$\sqrt{B{C}^{2}+P{B}^{2}}$=$\sqrt{\frac{9}{4}+3}$=$\frac{\sqrt{21}}{2}$,
可得PC和平面ABCD所成角的正弦值為$\fracp9vv5xb5{PC}$=$\frac{1}{\sqrt{7}}$,
余弦值為$\sqrt{1-\frac{1}{7}}$=$\frac{\sqrt{6}}{\sqrt{7}}$,
則直線PC與底面ABCD所成角的正切值為$\frac{1}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
故答案為:$\frac{3}{2}$,$\frac{\sqrt{6}}{6}$.

點(diǎn)評 本題考查面面垂直的性質(zhì)定理的運(yùn)用,直線和平面所成角的正切值,考查運(yùn)算能力,運(yùn)用三角形相似知識和等積法是解題的關(guān)鍵,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算${log_2}9•{log_3}5•{log_{\sqrt{5}}}8$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.要得到y(tǒng)=3×($\frac{1}{3}$)x的圖象,只需將函數(shù)y=($\frac{1}{3}$)x的圖象(  )
A.向左平移3個單位B.向右平移3個單位C.向左平移1個單位D.向右平移1個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.F1,F(xiàn)2是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩焦點(diǎn),E上任一點(diǎn)P滿足$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$≥$\frac{1}{2}{a^2}$,則橢圓E的離心率的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人從甲地去乙地共走了500m,途經(jīng)一條寬為x m的河流,該人不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知該物品能被找到的概率為$\frac{24}{25}$,則河寬為(  )
A.80mB.20mC.40mD.50m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若命題“直線y=kx+2與圓x2+y2=1有公共點(diǎn)”是假命題,則實(shí)數(shù)k的取值范圍是(-$\sqrt{3},\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}是公差不為零的等差數(shù)列,a1=1且a1,a3,a9,成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\{{2^{a_n}}+{a_n}\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.滿足等式$|\begin{array}{l}{z}&{-i}\\{1-i}&{1+i}\end{array}|$=0的復(fù)數(shù)z為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若$\overrightarrow{a}$和$\overrightarrow{b}$是兩個不共線的非零向量,$\overrightarrow{a}$和$\overrightarrow{b}$起點(diǎn)相同,且$\overrightarrow{a}$,t$\overrightarrow{b}$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$)三個向量的終點(diǎn)在同一條直線上.則t的值是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 色噜噜噜噜 | 精品一区二区三区四区五区 | 精品视频在线观看一区二区 | 中文字幕日韩一区二区 | 久久韩剧网 | 精品久久久久久久久久久久久久 | 久久情趣视频 | 国产午夜精品在线 | 亚洲精品麻豆 | 91.成人天堂一区 | 国产精品久久久久国产a级 一区二区三区在线 | www.国产| 日操干 | 久久久久一区二区三区 | 精品视频免费在线 | 亚洲青草 | 欧美一区二区激情三区 | 国产综合久久久 | 日本精品中文字幕 | 密室大逃脱第六季大神版在线观看 | 欧美日韩电影一区二区 | 日韩av一区二区在线 | 久久ri资源网 | 国产在线看h | www.久久久久久久久久久久 | 免费黄色福利网站 | 国产在线一区二区三区 | 久热中文在线 | 久久亚洲国产 | 久久久久99999 | 日韩激情视频在线观看 | 日本特黄a级高清免费大片 综合一区二区三区 | 亚洲欧美视频 | 91污视频在线| 精品一区二区三区四区视频 | 国产精品永久免费 | 九九九色 | 欧美视频一区二区三区四区 | 久久综合一区二区三区 | 久久精品国产99国产精品 | 羞羞网站在线 |