日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
16.甲、乙、丙三人投籃的水平都比較穩定,若三人各自獨立地進行一次投籃測試,則甲投中而乙不投中的概率為$\frac{1}{4}$,乙投中而丙不投中的概率為$\frac{1}{12}$,甲、丙兩人都投中的概率為$\frac{2}{9}$.
(1)分別求甲、乙、丙三人各自投籃一次投中的概率;
(2)若丙連續投籃5次,求恰有2次投中的概率;
(3)若丙連續投籃3次,每次投籃,投中得2分,未投中得0分,在3次投籃中,若有2次連續投中,而另外1次未投中,則額外加1分;若3次全投中,則額外加3分,記ξ為丙連續投籃3次后的總得分,求ξ的分布列和期望.

分析 (1)記甲、乙、丙三人各自獨立地進行一次投籃測試投中的事件依次為A、B、C,由題設條件有:$P(A\overline{B})$=$\frac{1}{4}$,$P(B\overline{C})$=$\frac{1}{12}$,P(AC)=$\frac{2}{9}$,解出即可得出.
(2)丙連續投籃5次,恰有2次投中的概率為$P=C_5^2{(\frac{2}{3})^2}{(\frac{1}{3})^3}=\frac{40}{243}$,
(3)ξ可以取的值為0,2,4,5,9,可求得:$P(ξ=0)={(\frac{1}{3})^3}=\frac{1}{27}$,$P(ξ=2)=C_3^1\frac{2}{3}{(\frac{1}{3})^2}=\frac{2}{9}$,$P(ξ=4)={(\frac{2}{3})^2}\frac{1}{3}=\frac{4}{27}$,$P(ξ=5)=2{(\frac{2}{3})^2}\frac{1}{3}=\frac{8}{27}$,$P(ξ=9)={(\frac{2}{3})^3}=\frac{8}{27}$.可得ξ的分布列及其數學期望.

解答 解:(1)記甲、乙、丙三人各自獨立地進行一次投籃測試投中的事件依次為A、B、C,由題設條件有:
$P(A\overline{B})$=$\frac{1}{4}$,$P(B\overline{C})$=$\frac{1}{12}$,P(AC)=$\frac{2}{9}$,即P(A)[1-P(B)]=$\frac{1}{4}$,①;P(B)[1-P(C)]=$\frac{1}{12}$,②P(A)P(C)=$\frac{2}{9}$,③.…(2分)
由①③得P(B)=1-$\frac{9}{8}$P(C),代入②得27P(C)]2-51P(C)+22=0.
解得P(C)=$\frac{2}{3}$或P(C)=$\frac{11}{9}$ (舍去).將P(C)=$\frac{2}{3}$分別代入②③可得P(A)=$\frac{1}{3}$,P(B)=$\frac{1}{4}$.
故甲、乙、丙三人各自投籃一次投中的概率分別是$\frac{1}{3}$,$\frac{1}{4}$,$\frac{2}{3}$…(5分)
(2)丙連續投籃5次,恰有2次投中的概率為$P=C_5^2{(\frac{2}{3})^2}{(\frac{1}{3})^3}=\frac{40}{243}$;…(7分)
(3)ξ可以取的值為0,2,4,5,9,可求得:$P(ξ=0)={(\frac{1}{3})^3}=\frac{1}{27}$,$P(ξ=2)=C_3^1\frac{2}{3}{(\frac{1}{3})^2}=\frac{2}{9}$,$P(ξ=4)={(\frac{2}{3})^2}\frac{1}{3}=\frac{4}{27}$,$P(ξ=5)=2{(\frac{2}{3})^2}\frac{1}{3}=\frac{8}{27}$,$P(ξ=9)={(\frac{2}{3})^3}=\frac{8}{27}$.
∴ξ的分布列為:

ξ02459
p$\frac{1}{27}$$\frac{2}{9}$$\frac{4}{27}$$\frac{8}{27}$$\frac{8}{27}$
∴ξ期望為Eξ=0+$2×\frac{2}{9}+4×\frac{4}{27}$+5×$\frac{8}{27}$+9×$\frac{8}{27}$=$\frac{140}{27}$…(12分)

點評 本題考查了相互獨立、互斥事件的概率計算公式及其數學期望,考查推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)離心率為$\frac{\sqrt{2}}{2}$,右焦點為F(c,0)到直線x=$\frac{{a}^{2}}{c}$的距離為1
(Ⅰ)求橢圓C的方程
(Ⅱ)不經過坐標原點O的直線l與橢圓C交于A,B兩點,且線段AB中點在直線y=$\frac{1}{2}$x上,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.某幾何體的三視圖是如圖所示的直角三角形、半圓和等腰三角形,各邊的長度如圖所示,則此幾何體的體積是16π,表面積是$24+(8+4\sqrt{13})π$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,在四棱錐中P-ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點M是線段PC上,MC=λPM,且PA∥平面MQB,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.某學校為了調查大聲朗讀對學生的記憶是否有明顯的促進作用,把200名經常大聲朗讀的學生與另外200名經常不大聲朗讀的學生的日常記憶情況作記載后進行比較,提出假設H0:“經常大聲朗讀對記憶沒有明顯的促進作用”,利用2×2列聯表計算得K2≈3.918,經查對臨界值表知P(K2≥3.841)≈0.05.根據比較結果,學校作出了以下的四個判斷:
p:有95%的把握認為“經常大聲朗讀對記憶有明顯的促進作用”;
q:若某學生經常大聲朗讀,那么他有95%的可能記憶力很好;
r:經常大聲朗讀的學生中,有95%的學生的記憶有明顯的促進;
s:經常大聲朗讀的學生中,只有5%的學生的記憶有明顯的促進.
則下列結論中,正確結論的序號是①④.(把你認為正確的命題序號都填上)
①p∧非q ②非p∧q  ③(非p∧非q)∧(r∨s) ④(p∨非r)∧(非q∨s)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.直線$x-\sqrt{3}y-2=0$的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.設直線l1:kx-y+1=0,l2:x-ky+1=0,若l1∥l2,則k=(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.由計算機產生2n個0~1之間的均勻隨機數x1,x2,…xn,y1,y2,…yn,構成n個數對(x1,y1),(x2y2),…(xn,yn)其中兩數能與1構成鈍角三角形三邊的數對共有m個,則用隨機模擬的方法得到的圓周率π的近似值為$\frac{4m}{n}+2$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若集合A={x||x-1|<2,x∈R},則A∩Z={0,1,2}.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 夜夜操网站| 日韩免费在线播放 | 高清免费视频日本 | 免费看一级黄色片 | 欧美性久久 | 91性高潮久久久久久久久 | 又色又爽又黄gif动态图 | 日本大尺度床戏揉捏胸 | 国产高潮在线观看 | 福利片在线观看 | 五月天婷婷激情 | 中文字幕在线免费看 | 国产精品久久久久久久久久辛辛 | 精品一区二区三区三区 | 天堂va蜜桃一区二区三区 | 日韩精品在线看 | 一级片在线观看视频 | 欧美一二| 伊人久久大 | 日韩精品一区在线观看 | 91片黄在线观看动漫 | 久在线| 国产理论在线 | 日本欧美视频 | 日韩一区二区在线观看视频 | 国产吃瓜黑料一区二区 | 五月婷婷丁香综合 | 三级在线观看视频 | 波多野结衣av在线播放 | 伊人精品在线 | 免费av一区 | 精品欧美日韩 | 日韩美女一区 | 日韩美女一区 | 亚洲视频国产 | 蜜臀av性久久久久av蜜臀妖精 | 四虎永久在线 | 国产小视频在线观看 | 亚洲日本中文字幕 | 日韩欧美高清视频 | 欧美一区二区在线视频 |