A. | 4≤m≤5 | B. | 2≤m≤4 | C. | m≤2 | D. | m≤4 |
分析 求出導函數,利用函數的單調性,推出不等式,利用基本不等式求解函數的最值,推出結果即可.
解答 解:函數f(x)=$\frac{1}{3}$x${\;}^{3}-\frac{1}{2}m{x}^{2}+4x-3$,
可得f′(x)=x2-mx+4,函數f(x)=$\frac{1}{3}$x${\;}^{3}-\frac{1}{2}m{x}^{2}+4x-3$在區間[1,2]上是增函數,
可得x2-mx+4≥0,在區間[1,2]上恒成立,
可得m≤x+$\frac{4}{x}$,x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,當且僅當x=2,時取等號、
可得m≤4.
故選:D.
點評 本題考查函數的導數的應用,考查最值的求法,基本不等式的應用,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:選擇題
A. | $\vec a-2\vec b$ | B. | $\overrightarrow{a}$-4$\vec b$ | C. | $\vec a$ | D. | $\vec b$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(1)=14 | B. | f(1)>14 | C. | f(1)≤14 | D. | f(1)≥14 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\frac{7}{4}$ | C. | $\frac{11}{4}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com