【題目】如圖所示的幾何體中,,
為全等的正三角形,且平面
平面
,平面
平面
,
.
證明:
;
求點(diǎn)
到平面
的距離.
【答案】證明見(jiàn)解析;
.
【解析】
分別取
,
中點(diǎn)
,
,連接
,
,
,由題中的面面垂直可得
平面
,
平面
,從而得四邊形
為平行四邊形,進(jìn)而可得證;
點(diǎn)
到平面
的距離與三棱錐
的高相等,進(jìn)而利用等體積法計(jì)算即可求得距離.
解:證明:分別取
,
中點(diǎn)
,
,連接
,
,
,
,
為全等的正三角形,
,
.
平面
平面
,平面
平面
,且平面
平面
,平面
平面
,
平面
,
平面
,
.
又,
四邊形
為平行四邊形.
.
,
.
記點(diǎn)
到平面
的距離為
,由圖可知點(diǎn)
到平面
的距離與三棱錐
的高相等,而三棱錐
的體積與三棱錐
的體積相同.
,
,
的邊長(zhǎng)為
,
,
,
三棱錐
的體積
.
在梯形中,
,
,
梯形
的高為
,
.
由等體積法可知,,
,即
.
故點(diǎn)點(diǎn)到平面
的距離為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線
的離心率互為倒數(shù),且過(guò)點(diǎn)
.
(1)求橢圓C的方程;
(2)過(guò)作兩條直線
與圓
相切且分別交橢圓于M、N兩點(diǎn).
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前
項(xiàng)和為
,且
(
是常數(shù),
),
.
(1)求的值及數(shù)列
的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(1,0)和點(diǎn)B(﹣1,0),,且∠AOC=x,其中O為坐標(biāo)原點(diǎn).
(1)若x=,設(shè)點(diǎn)D為線段OA上的動(dòng)點(diǎn),求
的最小值;
(2)若R,求
的最大值及對(duì)應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的右準(zhǔn)線方程為
,右頂點(diǎn)為
.
求橢圓C的方程;
若M,N是橢圓C上不同于A的兩點(diǎn),點(diǎn)P是線段MN的中點(diǎn).
如圖1,若
為等腰直角三角形且直角頂點(diǎn)P在x軸上方,求直線MN的方程;
如圖2所示,點(diǎn)Q是線段NA的中點(diǎn),若
且
的角平分線與x軸垂直,求直線AM的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且
在
處的切線與
平行.
求
的單調(diào)區(qū)間;
若存在區(qū)間
,使
在
上的值域是
,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用七場(chǎng)四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門票收入40萬(wàn)元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬(wàn)元.
(I)求總決賽中獲得門票總收入恰好為300萬(wàn)元的概率;
(II)設(shè)總決賽中獲得門票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)不共線的向量滿足
,
,
.
(1)若與
垂直,求
的值;
(2)當(dāng)時(shí),若存在兩個(gè)不同的
使得
成立,求正數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓E的方程為 (a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足BM=2MA,直線OM的斜率為
.
(1)求E的離心率e;
(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求E的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com