【題目】已知兩個不共線的向量滿足
,
,
.
(1)若與
垂直,求
的值;
(2)當時,若存在兩個不同的
使得
成立,求正數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓的上頂點為
,離心率為
. 拋物線
截
軸所得的線段長為
的長半軸長.
(1)求橢圓的方程;
(2)過原點的直線與
相交于
兩點,直線
分別與
相交于
兩點
證明:以為直徑的圓經過點
;
記和
的面積分別是
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(理)某電視臺舉辦的闖關節目共有五關,只有通過五關才能獲得獎金,規定前三關若有失敗即結束,后兩關若有失敗再給一次從失敗的關開始繼續向前闖的機會(后兩關總共只有一次機會),已知某人前三關每關通過的概率都是,后兩關每關通過的概率都是
.
(1)求該人獲得獎金的概率;
(2)設該人通過的關數為X,求隨機變量X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:.
若圓C的切線l在x軸和y軸上的截距相等,且截距不為零,求切線l的方程;
已知點
為直線
上一點,由點P向圓C引一條切線,切點為M,若
,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:x∈R,2mx2+mx-<0,命題q:2m+1>1.若“p∧q”為假,“p∨q”為真,則實數m的取值范圍是( )
A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)
C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點A,B的坐標分別為(-2,0),(2,0)直線AM,BM相交于點M,且它們的斜率之積是-.
(1)求點M的軌跡E的方程;
(2)設直線l:y=kx與E交于C,D兩點,F1(-1,0),F2(1,0),若E上存在點P,使得,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店銷售某海鮮,統計了春節前后50天該海鮮的需求量(
,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應求,可從其它商店調撥,銷售1公斤可獲利30元.假設商店每天該海鮮的進貨量為14公斤,商店的日利潤為
元.
(1)求商店日利潤關于需求量
的函數表達式;
(2)假設同組中的每個數據用該組區間的中點值代替.
①求這50天商店銷售該海鮮日利潤的平均數;
②估計日利潤在區間內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com