分析 (1)BD=DE-CE,根據(jù)已知利用AAS判定△ABD≌△CAE,從而得到BD=AE,AD=CE,因?yàn)锳D+AE=BD+CE,所以BD=DE-CE;
(2)BD=DE+CE成立,根據(jù)已知利用AAS判定△ABD≌△CAE,從而得到BD=AE,AD=CE,因?yàn)锳E=AD+DE,所以BD=DE+CE.
解答 解:(1)BD=DE-CE;
如圖1,
∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∴∠ABD+∠DAB=∠DEB+∠CAE,
∴∠ABD=∠CAE,
∵AB=AC,
在△ABD和△CAE中,
∵$\left\{\begin{array}{l}{∠BDA=∠AEC}\\{∠ABD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∴AD+AE=BD+CE,
∵DE=BD+CE,
∴BD=DE-CE.
(2)BD=DE+CE,
如圖2,
∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°
∴∠ABD=∠CAE,
∵AB=AC,
在△ABD和△CAE中,
∵$\left\{\begin{array}{l}{∠BDA=∠AEC}\\{∠ABD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵AE=AD+DE,
∴BD=DE+CE.
點(diǎn)評(píng) 本題主要考查學(xué)生對(duì)全等三角形的判定方法的理解及運(yùn)用,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵,常用的判定方法有SSS,SAS,AAS.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a2)3=a5 | B. | a2+a3=a5 | C. | a2•a3=a5 | D. | a5÷a5=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 80° | B. | 60° | C. | 40° | D. | 50° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 115元 | B. | 125元 | C. | 135元 | D. | 145元 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com