分析 (1)根據(jù)同角的余角相等得到∠ABP=∠EPD,根據(jù)相似三角形的判定定理證明結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可;
(3)根據(jù)矩形的判定定理、結(jié)合一元二次方程計(jì)算即可.
解答 (1)證明:∵∠A=90°,
∴∠ABP+∠APB=90°,
∵PE⊥BP,
∴∠EPD+∠APB=90°,
∴∠ABP=∠EPD,
∵AB∥CD,∠A=90°,
∴∠D=90°,
∴△ABP∽△DPE;
(2)∵△ABP∽△DPE,
∴$\frac{AB}{PD}$=$\frac{AP}{DE}$,即$\frac{2}{5-x}$=$\frac{x}{y}$,
則y=-$\frac{1}{2}$x2+$\frac{5}{2}$x,0<x<5;
(3)當(dāng)四邊形ABED為矩形時(shí),DE=AB=2,即y=2,
則-$\frac{1}{2}$x2+$\frac{5}{2}$x=2,
解得,x1=1,x2=4(舍去),
∴當(dāng)AP=1時(shí),四邊形ABED能構(gòu)成矩形.
點(diǎn)評(píng) 本題考查的是相似三角形的判定和性質(zhì)、矩形的判定和性質(zhì),掌握相關(guān)的性質(zhì)定理和判斷定理是解題的關(guān)鍵,注意函數(shù)思想在解題中的靈活運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2x+1)(2x-1)=4x2-1 | B. | 2x3-4x2=x2(2x-4) | C. | x2-4x+4=x(x-4)+4 | D. | x2+2x+1=(x+1)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com