分析 先求出CP、BF長,根據勾股定理求出BP,根據相似得出比例式,即可求出答案.
解答 解:∵四邊形ABCD是正方形,
∴∠ABC=∠PCF=90°,CD∥AB,
∵P為CD的中點,CD=AB=BC=4,
∴CP=2,
∵PC∥AB,
∴△FCP∽△FBA,
∵CP=2,AB=BC=4,
∴$\frac{CF}{BF}$=$\frac{CP}{AB}$=$\frac{1}{2}$,
∴$\frac{BF-4}{BF}$=$\frac{1}{2}$,
∴BF=8,
∴CF=8-4=4,
由勾股定理得:BP=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
∵四邊形ABCD是正方形,
∴∠BCP=∠PCF=90°,
∴PF是直徑,
∴∠E=90°=∠BCP,
∵∠PBC=∠EBF,
∴△BCP∽△BEF,
∴$\frac{PC}{EF}$=$\frac{BP}{BF}$,
∴$\frac{2}{EF}$=$\frac{2\sqrt{5}}{8}$,
∴EF=$\frac{8\sqrt{5}}{5}$.
故答案為:$\frac{8\sqrt{5}}{5}$.
點評 本題考查了正方形的性質,圓周角定理,相似三角形的性質和判定的應用,主要考查學生的推理能力和計算能力,題目比較好,難度適中.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
多面體 | 頂點數(V) | 面數(F) | 棱數(E) |
四面體 | 4 | 4 | 6 |
長方體 | 8 | 6 | 12 |
正八面體 | 6 | 8 | 12 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com