A. | AB=DC | B. | OB=OC | C. | ∠A=∠D | D. | ∠AOB=∠DOC |
分析 根據全等三角形的判定定理逐個判斷即可.
解答 解:A、根據條件AB=DC,OA=OB,∠AOB=∠DOC不能推出△AOB≌△DOC,故本選項錯誤;
B、∵在△AOB和△DOC中
$\left\{\begin{array}{l}{OA=OD}\\{∠AOB=∠DOC}\\{OB=OC}\end{array}\right.$
∴△AOB≌△DOC(SAS),故本選項正確;
C、∠A=∠D,OA=OD,∠AOB=∠DOC,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本選項錯誤;
D、根據∠AOB=∠DOC和OA=OD不能推出△AOB≌△DOC,故本選項錯誤;
故選B.
點評 本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | a(x-y)=ax-ay | B. | x3-x=x(x+1)(x-1) | C. | (x+1)(x+3)=x2+4x+3 | D. | x2+2x+1=x(x+2)+1 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}f(1)>0\\ \frac{3-m}{2}>1\\△≥0\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x_1}+{x_2}>2\\{x_1}{x_2}>1\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}f(1)>0\\ \frac{3-m}{2}>2\\△>0\end{array}\right.$ | D. | $\left\{\begin{array}{l}f(1)<0\\△>0\end{array}\right.$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com