分析 根據平行四邊形的性質和圓的半徑相等得到△AOB為等邊三角形,根據等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據圓周角定理計算即可.
解答 解:連接OB,
∵四邊形ABCO是平行四邊形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB為等邊三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圓周角定理得∠BAF=$\frac{1}{2}$∠BOF=15°,
故答案為:15°.
點評 本題考查的是圓周角定理、平行四邊形的性質定理、等邊三角形的性質的綜合運用,掌握同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半、等腰三角形的三線合一是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com