分析 作出輔助線后根據等腰三角形的性質得出BE=10,DE=4,進而得出△BEM為等邊三角形,△EMD為等邊三角形,從而得出BN的長,進而求出答案.
解答 解:延長ED交BC于M,延長AD交BC于N,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM為等邊三角形,
∴BE=EM
∵BE=10,DE=4,
∴DM=EM-DE═10-4=6,
∵△BEM為等邊三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=30°,
∴NM=3,
∴BN=7,
∴BC=2BN=14,
故答案為:14.
點評 此題主要考查了等腰三角形的性質和等邊三角形的性質,能求出MN的長是解決問題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com