分析 (1)第一個最大正方形邊長為2,第二個最大正方形邊長為1,余下的正方形邊長為1,所以鄰邊長分別為2和3的矩形是2階方形;
第一個最大正方形邊長為3,第二個和第三個最大正方形邊長都為1,余下的正方形邊長為1,所以鄰邊長分別為3和4的矩形是3階方形;
(2)a有四個值:當a=4時,三個最大的正方形邊長都為1,余下的正方形邊長為1;
當a=$\frac{5}{2}$時,第一個和第二個正方形邊長都為1,第三個正方形邊長為$\frac{1}{2}$,余下的正方形邊長為$\frac{1}{2}$;
當a=$\frac{4}{3}$時,第一個正方形邊長為1,第二個和第三個正方形邊長都為$\frac{1}{3}$,余下的正方形邊長為$\frac{1}{3}$;
當a=$\frac{5}{3}$時,第一個正方形邊長為1,第二個正方形邊長為$\frac{2}{3}$,第三個正方形邊長為$\frac{1}{3}$,余下的正方形邊長為$\frac{1}{3}$;
(3)先計算a=21r,前五個正方形邊長都為4r,后四個正方形邊長都為r,所以矩形ABCD是8階方形.
解答 解:(1)答案為:2階,3階;
作圖如下:
(2)作圖如下:
(3)∵a=5b+r,b=4r,
∴a=5×4r+r=21r,
作圖如下:
則矩形ABCD是8階方形.
點評 本題是一個四邊形的閱讀理解題,考查了學生的閱讀理解能力;給出一個新的定義,按此定義理解并解決問題,這類題的關鍵是找重點語句:依次找最大正方形,且最后余下的也是一個正方形;有n個正方形,就是n-1階方形;運用了數形結合的思想,使復雜問題簡單化,抽象問題具體化.
科目:初中數學 來源: 題型:選擇題
A. | 3 | B. | -5 | C. | -3 | D. | 5 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com