分析 (1)根據等腰直角三角形的性質得到CD=CE,再利用等角的余角相等得到∠DCB=∠CEF,然后根據“AAS”可證明△DBC≌△CFE;
(2)由△DBC≌△CFE得到BD=CF,BC=EF,再利用△ABC為等腰直角三角形得到AB=BC,所以AB=EF,AD=BF,接著證明△ABM≌△EFM,得到BM=FM,所以$\frac{AD}{BM}$=2;
(3)在EH上截取EQ=DG,如圖2,先證明△CDG≌△CEQ得到CG=CQ,∠DCG=∠ECQ,由于∠DCG+∠DCB=45°,則∠ECQ+∠DCB=45°,所以∠HCQ=45°,再證明△HCG≌△HCQ,則得到HG=HQ,然后可計算出HE=GD+GH.
解答 (1)證明:∵△CDE為等腰直角三角形,∠DCE=90°.
∴CD=CE,∠DCB+∠ECF=90°,
∵EF⊥BC,
∴∠ECF+∠CEF=90°,
∴∠DCB=∠CEF,
在△DBC和△CEF中,
$\left\{\begin{array}{l}{∠DBC=∠CFE}\\{∠DCB=∠CEF}\\{CD=EC}\end{array}\right.$,
∴△DBC≌△CFE;
(2)解:如圖1,
∵△DBC≌△CFE,
∴BD=CF,BC=EF,
∵△ABC為等腰直角三角形,
∴AB=BC,
∴AB=EF,AD=BF,
在△ABM和△EFM中,
$\left\{\begin{array}{l}{∠AMB=∠EMF}\\{∠ABM=∠EFM}\\{AB=EF}\end{array}\right.$,
∴△ABM≌△EFM,
∴BM=FM,
∴BF=2BM,
∴AD=2BM,
∴$\frac{AD}{BM}$的值為2;(3)解:HE=GH+GD,
在EH上截取EQ=DG,如圖2,
在△CDG和△CEQ中
$\left\{\begin{array}{l}{DG=EQ}\\{∠CDG=∠CEQ}\\{CD=CE}\end{array}\right.$,
∴△CDG≌△CEQ,
∴CG=CQ,∠DCG=∠ECQ,
∵∠DCG+∠DCB=45°,
∴∠ECQ+∠DCB=45°,
而∠DCE=90°,
∴∠HCQ=45°,
∴∠HCQ=∠HCG,
在△HCG和△HCQ中,
$\left\{\begin{array}{l}{HC=HC}\\{∠HCG=∠HCQ}\\{CG=CQ}\end{array}\right.$,
∴△HCG≌△HCQ,
∴HG=HQ,
∴HE=HQ+QE=HG+DG.
點評 此題是三角形綜合題,主要考查了等腰直角三角形的性質,全等三角形的判定與性質:全等三角形的判定是結合全等三角形的性質證明線段和角相等的重要工具.在判定三角形全等時,關鍵是選擇恰當的判定條件.在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構造三角形.
科目:初中數學 來源: 題型:選擇題
A. | y=-$\frac{3}{2}$x+2 | B. | y=$\frac{3}{2}$x+3 | C. | y=-$\frac{2}{3}$x+2 | D. | y=$\frac{2}{3}$x+2 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com