日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
11.如圖,∠MAN=45°,點C在射線AM上,AC=10,過C點作CB⊥AN交AN 于點B,P為線段AC上一個動點,Q點為線段AB上的動點,且始終保持PQ=PB.

(1)如圖1,若∠BPQ=45°,求證:△ABP是等腰三角形;
(2)如圖2,DQ⊥AP于點D,試問:此時PD的長度是否變化?若變化,請說明理由;若不變,請計算其長度;
(3)當點P運動到AC的中點時,將△PBQ以每秒1個單位的速度向右勻速平移,設運動時間為t秒,B點平移后的對應點為E,求△ABC和△PQE的重疊部分的面積.

分析 (1)由PQ=PB,求得∠PBQ=∠PQB=67.5°,∠APB=180°-45°-67.5°=67.5°,即可得出△ABP為等腰三角形;
(2)PD的長度不變化,過點B作BH⊥AC于點H,由AAS證得△PDQ≌△PBH,得出PD=BH=$\frac{1}{2}$AC=5;
(3)當點P運動到AC的中點時,則點Q與點A重合,△BPQ為等腰直角三角形,QP=PB=$\frac{1}{2}$AC=5,AB=5$\sqrt{2}$,將△PBQ向右平移,點P落到BC上時,平移了$\frac{5\sqrt{2}}{2}$個單位,點Q與點B重合時,平移了5$\sqrt{2}$個單位,分三種情況討論,①當0<t<$\frac{{5\sqrt{2}}}{2}$時,S=S△PQE-S△BEF=$\frac{25}{2}-\frac{1}{2}{t^2}$;②當$\frac{{5\sqrt{2}}}{2}$≤t<$5\sqrt{2}$時,$S=\frac{1}{2}B{Q^2}=\frac{1}{2}×{({5\sqrt{2}-t})^2}$=${t^2}-5\sqrt{2}t+25$;③當t≥$5\sqrt{2}$時,s=0.

解答 (1)證明:∵∠BPQ=45°,PQ=PB,
∴∠PBQ=∠PQB=67.5°,
∵∠MAN=45°,
∴∠APB=180°-45°-67.5°=67.5°,
∴∠APB=∠PBQ,
∴△ABP為等腰三角形;
(2)解:PD的長度不變化,
過點B作BH⊥AC于點H,如圖1所示:
∵DQ⊥AP,
∴∠PDQ=∠PHB=90°,
∵∠MAN=45°,
∴∠HBA=45°,
∴∠DPQ=∠PQB-∠MAN=∠PBQ-∠HBA=∠PBH,
在△PDQ和△PBH中,
$\left\{\begin{array}{l}{∠DPQ=∠PBH}\\{∠PDQ=∠BHP=90°}\\{PQ=PB}\end{array}\right.$,
∴△PDQ≌△PBH(AAS),
∴PD=BH=$\frac{1}{2}$AC=5;
(3)解:當點P運動到AC的中點時,
則點Q與點A重合,∠QPB=90°,∠PQB=∠PBQ=45°,QP=PB=$\frac{1}{2}$AC=5,AB=5$\sqrt{2}$,
將△PBQ向右平移,點P落到BC上時,平移了$\frac{5\sqrt{2}}{2}$個單位,
點Q與點B重合時,平移了5$\sqrt{2}$個單位,分三種情況討論,
①當0<t<$\frac{{5\sqrt{2}}}{2}$時,如圖2所示:
S=S△PQE-S△BEF=$\frac{25}{2}-\frac{1}{2}{t^2}$;
②當$\frac{{5\sqrt{2}}}{2}$≤t<$5\sqrt{2}$時,如圖3所示:
$S=\frac{1}{2}B{Q^2}=\frac{1}{2}×{({5\sqrt{2}-t})^2}$=${t^2}-5\sqrt{2}t+25$;
③當t≥$5\sqrt{2}$時,△PQE移出了△ABC,s=0.
綜上所述:△ABC和△PQE的重疊部分的面積為$\frac{25}{2}-\frac{1}{2}{t^2}$(0<t<$\frac{{5\sqrt{2}}}{2}$),或${t^2}-5\sqrt{2}t+25$($\frac{{5\sqrt{2}}}{2}$≤t<$5\sqrt{2}$),或0(t≥$5\sqrt{2}$).

點評 本題考查了全等三角形的判定與性質、等腰三角形的判定與性質、平移的性質、等腰直角三角形的性質、三角形面積的計算等知識;本題綜合性強,難度較大.

練習冊系列答案
相關習題

科目:初中數學 來源:2017屆湖北省襄陽老河口九年級3月月考數學試卷(解析版) 題型:單選題

在數軸上表示下列各數的點與表示-1的點距離最近的是( )

A. -1.75 B. -1.5 C. -0.25 D. -1.25

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

2.下列計算正確的是(  )
A.x6÷x3=x8B.x3+x2=x6C.(x23=x5D.x2•x3=x5

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

19.計算:3sin60°-2cos30°-tan60°•cot45°.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

6.第二次全國殘疾人抽樣調查結果顯示,我國0~6歲精神殘疾兒童約為11.1萬人,1.1萬人用科學記數法表示為(  )
A.1.11×104B.11.1×104C.1.11×105D.1.11×106

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

16.已知∠A=64°,則∠A的余角等于26°.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

3.如圖,已知函數y=$\frac{-3}{x}$與y=ax2+bx+c(a>0,b>0)的圖象相交于點P,且點P的縱坐標為1,則關于x的方程ax2+bx+$\frac{3}{x}$=0的解是x=-3,y=1.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

20.一條直線y=kx+b,其中k+b<0,kb>0,那么該直線經過(  )
A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

19.計算 
(1)$\sqrt{8}$+(1-$\sqrt{2}$)0+4sin30°;      
(2)sin245°+($\frac{1}{2}$)-2+cos245°.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕亚洲在线 | 久久国产婷婷国产香蕉 | www.国产 | 国产一区二区三区四区五区加勒比 | 97超碰人人在线 | 伊人超碰在线 | 色噜噜网站 | 激情网在线观看 | 久久国产亚洲精品 | 午夜精品久久久久久久男人的天堂 | 国产精品区二区三区日本 | 一区二区日韩精品 | 欧美日韩一区二区三区 | 一级毛片在线看aaaa | 国产免费视频一区二区三区 | 国产精品久久 | 直接看av的网站 | 电影91 | 免费看片国产 | 欧美三级在线看 | 亚洲中午字幕在线观看 | 人人超碰在线 | 日韩电影免费 | 狠狠躁夜夜躁人人爽天天高潮 | 日韩综合网 | 欧美精品一区视频 | 国产精品一区二区久久 | 狠狠综合久久 | 亚洲成人免费 | 国产成人欧美一区二区三区一色天 | 国产精品久久一区二区三区 | 国产精品影院在线观看 | 自拍亚洲 | 羞羞视频免费在线观看 | 久久69国产一区二区蜜臀 | 久久久www成人免费精品 | 久操成人 | 伊人夜夜躁av伊人久久 | 国产在线国偷精品产拍免费观看 | 亚洲大尺度网站 | 色老头在线观看 |