分析 (1)由∠1=∠2可知∠ACE=∠BCD,結合AC=BC,DC=EC可證△ACE≌△BCD,可得∠CAE=∠CBD;
(2))由∠1=45°、AC=BC知∠ABC+∠BAC=135°,又∠ABC=∠ABP+∠CBD,且∠CBD=∠CAE得∠ABP+∠BAP=135°,最后由∠APD是△ABP的一個外角可得.
解答 (1)證明:∵∠1=∠2,
∴∠1+∠ACD=∠2+∠ACD,即∠ACE=∠BCD,
在△ACE和△BCD中,
∵$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴∠CAE=∠CBD;
(2)解:∵∠1=45°,AC=BC,
∴∠ABC+∠BAC=135°,
∵∠ABC=∠ABP+∠CBD,且∠CBD=∠CAE,
∴∠ABP+∠CAE+∠BAC=135°,即∠ABP+∠BAP=135°,
又∵∠APD是△ABP的一個外角,
∴∠APD=∠ABP+∠BAP=135°,
即∠APD=135°.
點評 本題主要考查全等三角形的判定和性質的運用,根據全等三角形的性質和三角形外角性質的結合運用是解題關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{15}{x+1}$-$\frac{15}{x}$=$\frac{1}{2}$ | B. | $\frac{15}{x}-\frac{15}{x+1}=\frac{1}{2}$ | C. | $\frac{15}{x-1}-\frac{15}{x}=\frac{1}{2}$ | D. | $\frac{15}{x}-\frac{15}{x-1}=\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com