分析 由△DAC和△DBE都是等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,兩個角為60度,利用等式的性質(zhì)得到夾角相等,利用SAS即可得證.
解答 證明:∵△DAC和△DBE都是等邊三角形,
∴DA=DC,DB=DE,∠ADC=∠BDE=60°,
∴∠ADC+∠CDB=∠BDE+∠CDB,
即∠ADB=∠CDE,
在△DAB和△DCE中,$\left\{\begin{array}{l}{DA=DC}&{\;}\\{∠ADB=∠CDE}&{\;}\\{DB=DE}&{\;}\end{array}\right.$
∴△DAB≌△DCE(SAS).
點評 此題考查了全等三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩點確定一條直線 | B. | 兩點確定一條線段 | ||
C. | 兩點之間,直線最短 | D. | 兩點之間,線段最短 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com