【題目】如圖,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB
【答案】見解析;
【解析】
靈活運用垂直的定義,注意由垂直可得90°角,由90°角可得垂直,結(jié)合平行線的判定和性質(zhì),只要證得∠ADC=90°,即可得CD⊥AB.
證明:∵ DG⊥BC,AC⊥BC(已知),
∴ ∠DGB=∠ACB=90°(垂直的定義),
∴ DG∥AC(同位角相等,兩直線平行).
∴ ∠2=∠ACD(兩直線平行,內(nèi)錯角相等).
∵ ∠1=∠2(已知),∴ ∠1=∠ACD(等量代換),
∴ EF∥CD(同位角相等,兩直線平行).
∴ ∠AEF=∠ADC(兩直線平行,同位角相等).
∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直的定義),
∴ ∠ADC=90°(等量代換).
∴ CD⊥AB(垂直的定義).
科目:初中數(shù)學 來源: 題型:
【題目】在中,
,
,點
在直線
上(
,
除外),
的垂線
與
的垂線
交于點
,研究
和
的數(shù)量關系.
(1)在探究,
的關系時,運用“從特殊到一般”的數(shù)學思想,發(fā)現(xiàn)當點
是
的中點時,只需要取
邊的中點
(如圖),通過推理證明就可以得到
的數(shù)量關系,請你按照這種思路直接寫出
和
的數(shù)量關系:_____________________
(2)當點是線段
上(
,
除外)任意一點(其它條件不變),上面得到的結(jié)論是否仍然成立呢?證明你的結(jié)論;
(3)點在線段
的延長線上,上面得到的結(jié)論是否仍然成立呢?在下圖中畫出圖形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,⊙I為△ABC的內(nèi)切圓,點O為△ABC的外心,BC=6,AC=8.
(1)求⊙I的半徑;
(2)求線段OI的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,
,
,
為正三角形,點
、
分別在菱形的邊
、
上滑動,且
、
不與
、
、
重合.
(1)證明不論、
在
、
上如何滑動,總有
;
(2)當點、
在
、
上滑動時,分別探討四邊形
和
的面積是否發(fā)生變化?如果不變,求出這個定值;如果變化,求出最大(或最小)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD 和正方形ECGF,其中E、H分別為AD、BC中點,連結(jié)AF、HG、AH.
(1)求證:;
(2)求證:;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】佳佳某天上午9時騎自行車離開家,17時回家,他有意描繪了離家的距離與時同的變化情況,如圖所示.
(1)圖象表示了哪兩個變量的關系?
(2)10時和11時,他分別離家多遠?
(3)他最初到達離家最遠的地方是什么時間?離家多遠?
(4)11時到13時他行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在 Rt△ABC 中,∠BAC=90°,AC=AB,點 F 是射線 CA 上一點,連接 BF,過 C 作 CE⊥BF,垂足為點 E,直線 CE,AB 相交于點 D.
(1)如圖 1,當點 F 在線段 CA 延長線上時,求證:AB+AD=CF;
(2)如圖 2,當點 F 在線段 CA 上時,連接 EA,求證:EA 平分∠DEB;
(3)如圖 3,當點 F 恰好為線段 CA 的中點時,EF=1,試求△BDE 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)①如圖1,已知,
,可得
__________.
②如圖2,在①的條件下,如果平分
,則
__________.
③如圖3,在①、②的條件下,如果,則
__________.
(2)嘗試解決下面問題:已知如圖4,,
,
是
的平分線,
,求
的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com