日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖,操作:把正方形CGEF的對(duì)角線(xiàn)CE放在正方形ABCD的邊BC的延長(zhǎng)線(xiàn)上(CG>BC),取線(xiàn)段AE的中點(diǎn)M.
探究:線(xiàn)段MD、MF的關(guān)系,并加以證明.
說(shuō)明:(1)如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫(xiě)出來(lái)(要求至少寫(xiě)3步);
(2)在你經(jīng)歷說(shuō)明(1)的過(guò)程后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.
注意:選取①完成證明得10分;選取②完成證明得7分;選取③完成證明得5分.
①DM的延長(zhǎng)線(xiàn)交CE于點(diǎn)N,且AD=NE;②將正方形CGEF6繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°(如圖),其他條件不變;③在②的條件下,且CF=2AD.
附加題:將正方形CGEF繞點(diǎn)C旋轉(zhuǎn)任意角度后(如圖),其他條件不變.探究:線(xiàn)段MD、MF的關(guān)系,并加以證明.
證明:關(guān)系是:MD=MF,MD⊥MF
如圖,延長(zhǎng)DM交CE于點(diǎn)N,連接FD、FN

∵正方形ABCD,
∴ADBE,AD=DC,
∴∠1=∠2
又∵AM=EM,∠3=∠4
∴△ADM≌△ENM
∴AD=EN,MD=MN
∵AD=DC,∴DC=NE
又∵正方形CGEF,∴∠FCE=∠NEF=45°,F(xiàn)C=FE,∠CFE=90°
又∵正方形ABCD,∴∠BCD=90°.∴∠DCF=∠NEF=45°
∴△FDC≌△FNE
∴FD=FN,∠5=∠6
∵∠CFE=90°,∴∠DFN=90°
又∵DM=MN=
1
2
DN,
∴M為DN的中點(diǎn),
∴FM=
1
2
DN,
∴MD=MF,DM⊥MF
思路一:∵四邊形ABCD、CGEF是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠CDA=∠BAD=90°
CF=EF=EG=CG,∠G=∠GEF=∠EFC=∠FCG=90°,∠FCE=∠FEC=45°
∴∠DCF=∠FEC
思路二:
延長(zhǎng)DM交CE于N,∵四邊形ABCD、CGEF是正方形
∴ADCE,∴∠DAM=∠NEM
又∵∠DMA=∠NME,AM=EM,∴△ADM≌△ENM
思路三:∵正方形CGEF,
∴∠FCE=∠FEC=45°
又∵正方形ABCD,
∴∠DCB=90°.
∴∠DCF=180°-∠DCB-∠FCE=45°,∠DCF=∠FEC=45°
選取條件①
證明:如圖
∵正方形ABCD,
∴ADBE,AD=DC,∴∠1=∠2
∵AD=NE,∠3=∠4,∴△ADM≌△ENM
∴MD=MN
又∵AD=DC,
∴DC=NE
又∵正方形CGEF,
∴FC=FE,∠FCE=∠FEN=45°.
∴∠FCD=∠FEN=45°
∴△FDC≌△FNE
∴FD=FN,∠5=∠6,
∴∠DFN=∠CFE=90°
∴MD=MF,MD⊥MF
選取條件②
證明:如圖,
延長(zhǎng)DM交FE于N

∵正方形ABCD、CGEF
∴CF=EF,AD=DC,∠CFE=90°,ADFE.
∴∠1=∠2
又∵M(jìn)A=ME,∠3=∠4,
∴△AMD≌△EMN
∴MD=MN,AD=EN.
∵AD=DC,
∴DC=NE
又∵FC=FE,
∴FD=FN
又∵∠DFN=90°,
∴FM⊥MD,MF=MD.
選取條件③
證明:如圖,
延長(zhǎng)DM交FE于N.
∵正方形ABCD、CGEF
∴CF=EF,AD=DC,∠CFE=90°,ADFE
∴∠1=∠2
又∵M(jìn)A=ME,∠3=∠4,
∴△AMD≌△EMN
∴AD=EN,MD=MN.
∵CF=2AD,EF=2EN
∴FD=FN.又∵∠DFN=90°,
∴MD=MF,MD⊥MF

附加題:
證明:如圖
過(guò)點(diǎn)E作AD的平行線(xiàn)分別交DM、DC的延長(zhǎng)線(xiàn)于N、H,連接DF、FN
則∠ADC=∠H,∠3=∠4.
∵AM=ME,∠1=∠2,
∴△ADM≌△ENM
∴DM=NM,AD=EN.
∵正方形ABCD、CGEF
∴AD=DC,F(xiàn)C=FE,∠ADC=∠FCG=∠CFE=90°,CGFE
∴∠H=90°,∠5=∠NEF,DC=NE
∴∠DCF+∠7=∠5+∠7=90°
∴∠DCF=∠5=∠NEF
∵FC=FE,∴△DCF≌△NEF
∴FD=FN,∠DFC=∠NFE.
∵∠CFE=90°
∴∠DFN=90°.
∴DM=FM,DM⊥FM.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,梯形ABCD中,ADBC,∠B=90°,AD=DC=2,∠ADC=120°,求梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,梯形ABCD中,ABCD,且BC+CD=AB,設(shè)∠A=X°,∠B=Y°,那么y關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在梯形ABCF中,∠ABC=90°,AFBC,BA與CF的延長(zhǎng)線(xiàn)交于點(diǎn)E,D為AF延長(zhǎng)線(xiàn)上一點(diǎn),且BD⊥CE于G,CF=BC
(1)求證:EF=FD;
(2)若FG=2,CG=6,求四邊形ABGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在梯形ABCD中,ABDC,EF是梯形的中位線(xiàn),AC交EF于G,BD交EF于H,以下說(shuō)法錯(cuò)誤的是(  )
A.ABEF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似
D.EG=FH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是一種“羊頭”形圖案,其作法是:從正方形①開(kāi)始,以它的一邊為斜邊,向外作等腰直角三角形,然后再以其直角邊為邊,分別向外作正方形②和②′,…,依此類(lèi)推,若正方形①的邊長(zhǎng)為64cm,則正方形⑦的邊長(zhǎng)為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一條對(duì)角線(xiàn)平分一個(gè)矩形的內(nèi)角,這個(gè)矩形會(huì)是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方形ABCD中,對(duì)角線(xiàn)AC、BD交于O點(diǎn),過(guò)O點(diǎn)作OE⊥OF分別交DC于E,交BC于F,∠FEC的角平分線(xiàn)EP交直線(xiàn)AC于P
(1)求證:OE=OF;
(2)寫(xiě)出線(xiàn)段EF、PC、BC之間的一個(gè)等量關(guān)系式,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方形ABCD中,∠EAF=45°,BE=3,DF=4,則EF的長(zhǎng)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 精品久久久久久久久久久 | 欧美久久精品 | 久草成人网 | 国产精品久久久久一区二区三区 | 国产精品久久久久久久久免费软件 | 91精品国产综合久久香蕉922 | 亚洲在线一区 | www.日韩欧美 | 成人综合在线观看 | 亚洲精品一区二三区不卡 | 欧美三级视频在线观看 | av一区在线观看 | 少妇黄色 | 久久久久久久久久久九 | 精品在线一区二区 | 成人aaa | 97精品视频在线观看 | 九九热免费精品视频 | 黄色大片免费网站 | 国产一区二区播放 | av一区二区三区 | 成人在线不卡 | 精品日韩在线 | 日日操天天操 | 国产成人精品免高潮在线观看 | 国内久久精品视频 | 日本中文字幕在线观看 | 亚洲精品视频导航 | 精品一区二区三区免费 | 五月av| 日日夜夜爽| 中文字幕_第2页_高清免费在线 | 亚洲欧洲在线观看 | 91一区二区三区久久国产乱 | 成人亚洲视频 | 成人毛片在线观看 | 91国产精品 | 久久国产香蕉视频 | 久久久精品影院 | 亚洲爱婷婷色婷婷五月 | 久久最新网址 |