分析 (1)證明△ACD≌△BCD即可解題;
(2)連接CM,先證明CM=CD,即可證明△BCD≌△ECM,即可解題.
解答 解:∵AC=BC,∠CAD=∠CBD
∴∠DAB=∠DBA,
∴AD=BD,
在△ACD和△BCD中,
$\left\{\begin{array}{l}{AD=BD}\\{∠CAD=∠CBD}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△BCD(SAS),
∴∠ACD=∠BCD=45°,
∴∠CDE=∠CAD+∠ACD=60°;
(2)連接CM,
∵DC=DM,∠CDE=60°,
∴△DMC為等邊三角形,
∴∠MCE=45°
∴CM=CD,
在△BCD和△ECM中,
$\left\{\begin{array}{l}{CD=CM}\\{∠BCD=∠ECM}\\{CB=CE}\end{array}\right.$,
∴△BCD≌△ECM(SAS),
∴ME=BD.
點評 本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com