日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
12.如圖1,在等腰三角形Rt△ABC中,∠ACB=90°,AC=BC,M、N在斜邊上,且∠MCN=45°.
(1)將△BCN繞點C按順時針方向旋轉90°得△ACP,連接MP(如圖2).
①試說明∠PCM=∠NCM的理由;
②求證:MN2=AM2+BN2
(2)如圖3,若原題中點N仍在線段AB上,而點M在BA的延長線上時,試判斷AM、BN、MN之間的數量關系并說明理由.

分析 (1)將△BCN繞點C按順時針方向旋轉90°得△ACP,連接MP,根據SAS證得△MCP≌△MCN,得出MP=MN,再根據∠PAM=∠CAP+∠CAB=90°,運用勾股定理得出Rt△APM中,PM2=AM2+AP2,進而得到MN2=AM2+BM2
(2)將△BCN繞點C按順時針方向旋轉90°得△ACP,連接MP,得出∠PCN=∠ACB=90°,PC=NC,AP=BN,∠CAP=∠B=45°,根據SAS證得△MCP△MCN,進而得出MP=MN,再根據∠PAB=∠CAP+∠CAB=90°,得到∠PAM=90°,在Rt△APM中,根據勾股定理得到PM2=AM2+AP2,進而得出MN2=AM2+BM2..

解答 解:(1)①如圖2,將△BCN繞點C按順時針方向旋轉90°得△ACP,連接MP,則
∠BCN=∠ACP,
∵在△ABC中,∠ACB=90°,∠MCN=45°,
∴∠ACM+∠BCN=45°,
∴∠ACP+∠ACM=45°,
∴∠PCM=∠NCM;
②證明:由旋轉可得△CAP≌△CBN,
∴AP=BN,PC=NC,∠CAP=∠B=45°,
在△MCP和△MCN中,
$\left\{\begin{array}{l}{PC=NC}\\{∠PCM=∠NCM}\\{CM=CM}\end{array}\right.$,
∴△MCP≌△MCN(SAS),
∴MP=MN,
∵∠PAM=∠CAP+∠CAB=90°,
∴Rt△APM中,PM2=AM2+AP2
∴MN2=AM2+BM2

(2)MN2=AM2+BM2
理由:如圖,將△BCN繞點C按順時針方向旋轉90°得△ACP,連接MP,則
∠PCN=∠ACB=90°,PC=NC,AP=BN,∠CAP=∠B=45°,
∵∠MCN=45°,
∴∠PCM=90°-45°=45°,
∴∠PCM=∠NCP,
在△MCP和△MCN中,
$\left\{\begin{array}{l}{PC=NC}\\{∠PCM=∠NCM}\\{CM=CM}\end{array}\right.$,
∴△MCP△MCN(SAS),
∴MP=MN,
∵∠PAB=∠CAP+∠CAB=90°,
∴∠PAM=90°,
∴Rt△APM中,PM2=AM2+AP2
∴MN2=AM2+BM2

點評 此題屬于三角形綜合題,主要考查了旋轉的性質,等腰直角三角形的性質,勾股定理及全等三角形的判定與性質的綜合應用.解題的關鍵是運用:旋轉前、后的圖形全等.解題時注意:等腰直角三角形是一種特殊的三角形,具有所有三角形的性質,還具備等腰三角形和直角三角形的所有性質.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

2.135°的圓心角的扇形面積是所在圓面積的$\frac{3}{8}$(填幾分之幾).

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

3.絕對值大于2且不大于5的所有負整數的和是-12,絕對值不大于5的所有整數的積是0.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

20.如圖,△ABC、△ADE均為等邊三角形,AD平分∠BAC交BC于D,DE交AB于F,則下列結論:①AD⊥BC;②EF=FD; ③BE=BD,其中正確的有①②③(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

7.解不等式(組),并把題(2)的解在數軸上表示出來..
(1)5x-4<2(x+4)
(2)$\left\{\begin{array}{l}{2x-1≥x+1}\\{x+8<4x-1}\end{array}\right.$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

17.如圖,在直線MN的異側有A、B兩點,按要求畫圖取點,并寫出畫圖的依據.
(1)在直線MN上取一點C,使線段AC最短.依據是垂線段最短.
(2)在直線MN上取一點D,使線段AD+BD最短.依據是兩點之間,線段最短.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

4.扇形統計圖中,圓心角為45°的扇形表示的部分占總體的百分比為12.5%.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

1.下列四邊形ABCD和四邊形EFGD是位似圖形,它們的位似中心是(  )
A.點EB.點FC.點GD.點D

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

2.如圖,在△ABC中,∠A:∠B:∠ACB=2:5:11,若將△ACB繞點C逆時針旋轉,使旋轉前后的△A′B′C中的頂點B′在原三角形的邊AC的延長線上,求∠BCA′的度數.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: av在线免费播放 | av资源中文在线天堂 | 99国产精品99久久久久久 | 91九色视频在线 | 日韩精品播放 | 综合久草| 久草青娱乐 | 美女一级a毛片免费观看97 | 在线观看日韩 | 国产成人精品午夜在线播放 | 麻豆91在线观看 | 中文字幕一区二区三区乱码在线 | 玖玖精品 | 国产免费一区二区三区 | 国产在线精品二区 | 日韩三及片 | 日本一区二区不卡视频 | 人人爽在线| 国产精品免费视频观看 | 国产在线精品一区 | 最新天堂中文在线 | 欧美午夜视频 | 夜夜草视频 | 日韩成人在线免费观看 | 国产欧美日韩综合精品一区二区 | 欧美在线激情 | 亚洲欧美一区二区三区视频 | 精品无码久久久久久国产 | 蜜桃在线视频 | 在线国v免费看 | 精品福利av导航 | 97成人在线免费视频 | 国产欧美久久一区二区三区 | 国产综合精品 | 超碰97av| 在线看www| 欧美黄色大片网站 | 国产免费看 | 毛片网站在线 | 日本中文字幕在线视频 | 精品一区二区三区免费 |