分析 根據題意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,進而得到∠ADC=∠CEB=90°,再根據等角的余角相等可得∠BCE=∠DAC,再證明△ADC≌△CEB即可,利用全等三角形的性質進行解答.
解答 解:由題意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
$\left\{\begin{array}{l}{∠ADC=∠CEB}\\{∠DAC=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB(AAS);
由題意得:AD=EC=6cm,DC=BE=14cm,
∴DE=DC+CE=20(cm),
答:兩堵木墻之間的距離為20cm.
點評 此題主要考查了全等三角形的應用,關鍵是正確找出證明三角形全等的條件.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com