分析 證△ACE∽△BDE得$\frac{AC}{BD}=\frac{AE}{BE}$,即$\frac{AE}{BE}$=$\frac{1}{2}$,從而知BE=$\frac{2}{3}$AB,利用勾股定理求得AB的長,繼而求得BE.
解答 解:∵AC∥DE,
∴△ACE∽△BDE,
∴$\frac{AC}{BD}=\frac{AE}{BE}$,即$\frac{AE}{BE}$=$\frac{1}{2}$,
則BE=$\frac{2}{3}$AB,
又∵AB=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
∴BE=$\frac{2\sqrt{13}}{3}$,
故答案為:$\frac{2\sqrt{13}}{3}$.
點評 本題主要考查相似三角形的判定與性質及勾股定理,熟練掌握相似三角形的判定與性質得出BE=$\frac{2}{3}$AB是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2 | B. | π | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$π |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
x | … | -1 | 0 | 2 | 3 | 4 | … |
y | … | 5 | 2 | 2 | 5 | 10 | … |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com