分析 (1)根據OA與OC的關系,可得A點坐標,根據待定系數法,可得函數解析式;
(2)根據銳角三角函數,可得PH的長,根據相似三角形的性質,可得MC的長,根據三角形的面積,可得關于x的方程,根據解方程,可得答案.
解答 解:(1)∵C(0,4),O(0,0),
∴OC=4.
∵OC=4OA,
∴OA=1.
∵點A在x軸的負半軸上,
∴A(-1,0).
設這條拋物線的解析式為y=ax2+bx+c,
∵拋物線過點 A(-1,0),B(3,0),C(0,4)
∴$\left\{\begin{array}{l}a-b+c=0\\ 9a+3b+c=0\\ c=4\end{array}\right.$,
解得$\left\{\begin{array}{l}a=-\frac{4}{3}\\ b=\frac{8}{3}\\ c=4\end{array}\right.$,
∴這條拋物線的解析式為y=-$\frac{4}{3}$x2+$\frac{8}{3}$x+4,
它的頂點坐標為(1,$\frac{16}{3}$);
(2)過點P作PH⊥AC,垂足為H.
∵P點在x軸的正半軸上,
∴設P(x,0).
∵A(-1,0),
∴PA=x+1.
∵在Rt△AOC中,OA2+OC2=AC2
又∵OA=1,OC=4,
∴AC=$\sqrt{O{A}^{2}+O{C}^{2}}$=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,
∵∠AOC=90°,
∴sin∠CAO=$\frac{OC}{OA}$=$\frac{4}{\sqrt{17}}$=$\frac{4\sqrt{17}}{17}$
∵∠PHA=90°,
∴sin∠CAO=$\frac{PH}{AP}$=$\frac{PH}{x+1}$=$\frac{4\sqrt{17}}{17}$
∴PH=$\frac{4\sqrt{17}(x+1)}{17}$.
∵PM∥BC,
∴$\frac{BP}{AB}$=$\frac{CM}{AC}$
∵B(3,0),P(x,0)
①點P在點B的左側時,BP=3-x
∴$\frac{3-x}{4}$=$\frac{CM}{\sqrt{17}}$,
∴CM=$\frac{\sqrt{17}(3-x)}{4}$.
∵S△PCM=2,
∴$\frac{1}{2}$CM•PH=2,
∴$\frac{1}{2}$•$\frac{\sqrt{17}(3-x)}{4}$•$\frac{4\sqrt{17}(x+1)}{17}$=2.
解得x=1.
∴P(1,0);
②點P在點B的右側時,BP=x-3
∴$\frac{x-3}{4}$=$\frac{CM}{\sqrt{17}}$,
∴CM=$\frac{\sqrt{17}(3-x)}{4}$,
∵S△PCM=2,
∴$\frac{1}{2}$CM•PH=2,
∴$\frac{1}{2}$•$\frac{\sqrt{17}(3-x)}{4}$•$\frac{4\sqrt{17}(x+1)}{17}$=2.
解得x1=1+2$\sqrt{2}$,x2=1-2$\sqrt{2}$(不合題意,舍去)
∴P($1+2\sqrt{2}$,0).
綜上所述,P的坐標為(1,0)或($1+2\sqrt{2}$,0).
點評 本題考查了二次函數綜合題,利用待定系數法求函數解析式;利用銳角三角函數得出PH的長是解題關鍵,又利用相似三角形的性質得出CM的長,利用三角形的面積得出關于x的方程.
科目:初中數學 來源:2016-2017學年江蘇省七年級下學期第一次月考數學試卷(解析版) 題型:單選題
畫△ABC中AC邊上的高,下列四個畫法中正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源:2016-2017學年江蘇省七年級下學期第一次月考數學試卷(解析版) 題型:單選題
在下列四個汽車標志圖案中,能用平移變換來分析其形成過程的圖案是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源:2017屆江蘇省連云港市灌云縣西片九年級下學期第一次月考數學試卷(解析版) 題型:填空題
某校甲乙兩個體操隊隊員的平均身高相等,甲隊隊員身高的方差是S甲2=1.9,乙隊隊員身高的方差是S乙2=1.2,那么兩隊中隊員身高更整齊的是__隊.(填“甲”或“乙”)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com