分析 連接BO并延長交⊙O與點E,連接EC,知∠BDC=∠BEC、∠BCE=90°,可得cos∠BDC=cos∠BEC=$\frac{CE}{BE}$=$\frac{3}{4}$,設EC=3x、BE=4x得BC=$\sqrt{B{E}^{2}-C{E}^{2}}$=$\sqrt{7}$x,連接AO并延長交BC于點F,知∠ABC=∠ACB=∠ADC、∠AFB=∠AFC=90°,求得BF=CF=$\frac{\sqrt{7}}{2}$x、OF=$\frac{1}{2}$EC=$\frac{3}{2}$x,即可得答案.
解答 解:如圖,連接BO并延長交⊙O與點E,連接EC,
則∠BDC=∠BEC,
∵BE為⊙O的直徑,
∴∠BCE=90°,
∴cos∠BDC=cos∠BEC=$\frac{CE}{BE}$=$\frac{3}{4}$,
設EC=3x,則BE=4x,
∴BC=$\sqrt{B{E}^{2}-C{E}^{2}}$=$\sqrt{7}$x,
連接AO并延長交BC于點F,
∵$\widehat{AB}$=$\widehat{AC}$,
∴∠ABC=∠ACB=∠ADC,
∴∠AFB=∠AFC=90°,
則BF=CF=$\frac{\sqrt{7}}{2}$x,
∵BO=EO,
∴OF為△BEC的中位線,
∴OF=$\frac{1}{2}$EC=$\frac{3}{2}$x,
∴AF=AO+OF=$\frac{7}{2}$x,
則tan∠ADC=tan∠ACF=$\frac{AF}{CF}$=$\frac{\frac{7}{2}x}{\frac{\sqrt{7}}{2}x}$=$\sqrt{7}$.
點評 本題主要考查圓周角定理、勾股定理、等腰三角形的性質及中位線定理、三角函數的定義,熟練掌握圓周角定理是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com