分析 (1)①根據旋轉的性質可得AC=CD,然后求出△ACD是等邊三角形,根據等邊三角形的性質可得∠ACD=60°,然后根據內錯角相等,兩直線平行進行解答;
②根據等邊三角形的性質可得AC=AD,再根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC=$\frac{1}{2}$AB,然后求出AC=BD,再根據等邊三角形的性質求出點C到AB的距離等于點D到AC的距離,然后根據等底等高的三角形的面積相等解答;
(2)根據旋轉的性質可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據全等三角形對應邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明.
解答 解:(1)①DE∥AC,
理由如下:如圖2,∵△DEC繞點C旋轉點D恰好落在AB邊上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等邊三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=$\frac{1}{2}$AB,
∴BD=AD=AC,
根據等邊三角形的性質可得,△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2,
故答案為:①DE∥AC;②S1=S2;
(2)如圖3,∵△DEC是由△ABC繞點C旋轉得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,
$\left\{\begin{array}{l}{∠ACN=∠DCM}\\{∠CMD=∠N=90°}\\{AC=CD}\end{array}\right.$,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2.
點評 本題屬于三角形綜合題,主要考查了全等三角形的判定與性質,三角形的面積計算公式,等邊三角形的判定與性質,直角三角形30°角所對的直角邊等于斜邊的一半的性質的綜合應用,熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 65° | D. | 70° |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com