分析 (1)延長BP交AC于D,根據△PDC外角的性質知∠BPC>∠1;根據△ABD外角的性質知∠1>∠A,所以易證∠BPC>∠A.
(2)由三角形內角和定理求出∠ABC+∠ACB=140°,由角平分線和三角形內角和定理即可得出結果.
解答 (1)證明:延長BP交AC于D,如圖所示:
∵∠BPC是△CDP的一個外角,∠1是△ABD的一個外角,
∴∠BPC>∠1,∠1>∠A,
∴∠BPC>∠A;
(2)解:在△ABC中,∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=180°-40°=140°,
∵PB平分∠ABC,PC平分∠ACB,
∴∠PBC=$\frac{1}{2}$∠ABC,∠PCB=$\frac{1}{2}$∠ACB,
在△ABC中,∠P=180°-(∠PBC+∠PCB)=180°-($\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ACB)
=180°-$\frac{1}{2}$(∠ABC+∠ACB)=180°-$\frac{1}{2}$×140°=110°.
點評 此題主要考查了三角形的外角性質、三角形內角和定理、三角形的角平分線定義;熟練掌握三角形的外角性質和三角形內角和定理是解決問題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com