分析 在Rt△ABE中,利用三角形相似可求得AE、DE的長,設A點關于BD的對稱點A′,連接A′D,可證明△ADA′為等邊三角形,當PQ⊥AD時,則PQ最小,所以當A′Q⊥AD時AP+PQ最小,從而可求得AP+PQ的最小值等于DE的長,可得出答案..
解答 解:
設BE=x,則DE=3x,
∵四邊形ABCD為矩形,且AE⊥BD,
∴△ABE∽△DAE,
∴AE2=BE•DE,即AE2=3x2,
∴AE=$\sqrt{3}$x,
在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=($\sqrt{3}$x)2+(3x)2,解得x=$\sqrt{3}$,
∴AE=3,DE=3$\sqrt{3}$,
如圖,設A點關于BD的對稱點為A′,連接A′D,PA′,
則A′A=2AE=6=AD,AD=A′D=6,
∴△AA′D是等邊三角形,
∵PA=PA′,
∴當A′、P、Q三點在一條線上時,A′P+PQ最小,
又垂線段最短可知當PQ⊥AD時,A′P+PQ最小,
∴AP+PQ=A′P+PQ=A′Q=DE=3$\sqrt{3}$.
故答案是:3$\sqrt{3}$.
點評 本題主要考查軸對稱的應用,利用最小值的常規解法確定出A的對稱點,從而確定出AP+PQ的最小值的位置是解題的關鍵,利用條件證明△A′DA是等邊三角形,借助幾何圖形的性質可以減少復雜的計算.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com