分析 根據圖象可得兩個一次函數的交點坐標為P(4,-6),那么交點坐標同時滿足兩個函數的解析式,而所求的方程組正好是由兩個函數的解析式所構成,因此兩函數的交點坐標即為方程組的解.
解答 解:∵一次函數y=2x+b和y=kx-3(k≠0)的圖象交于點P(4,-6),
∴點P(4,-6)滿足二元一次方程組$\left\{\begin{array}{l}2x-y=-b\\ kx-y=3\end{array}\right.$,
∴方程組的解是$\left\{\begin{array}{l}{x=4}\\{y=-6}\end{array}\right.$.
故答案為$\left\{\begin{array}{l}{x=4}\\{y=-6}\end{array}\right.$.
點評 本題考查了一次函數與二元一次方程組,方程組的解就是使方程組中兩個方程同時成立的一對未知數的值,而這一對未知數的值也同時滿足兩個相應的一次函數式,因此方程組的解就是兩個相應的一次函數圖象的交點坐標.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com