日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
13.一個平行四邊形的一條對角線的長度為5,一條邊為7,則它的另一條對角線α的取值范圍是9<α<19.

分析 因為平行四邊形的對角線互相平分,根據三角形三邊之間的關系,可先求得另一對角線的一半的取值,進而可求出則它的另一條對角線α的取值范圍.

解答 解:如圖,已知平行四邊形中,AB=7,AC=5,
∵四邊形ABCD是平行四邊形,
∴a=2OB,AC=2OA=5,
∴OB=$\frac{1}{2}$α,OA=2.5,
∴在△AOB中:AB-OA<OB<AB+OA,
∴4.5<$\frac{1}{2}$a<9.5
即:9<α<19,
故答案為:9<α<19.

點評 此題考查了平行四邊形的性質以及三角形的三邊關系.此題比較簡單,注意掌握數形結合思想的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

3.如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D.
(1)求證:AC平分∠DAB;
(2)求證:AC2=AD•AB;
(3)若AD=$\frac{8}{5}$,sinB=$\frac{4}{5}$,求線段BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

4.已知:如圖,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分線相交于點D,DE⊥BC,DF⊥AC,垂足分別為E、F.求證:四邊形CEDF是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

1.已知a,b為整數,且滿足a($\sqrt{2}$+1)+3(b-2$\sqrt{2}$)=6+3$\sqrt{2}$,求a+b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

8.如圖.分別以△ABC的邊AC、BA向外作正方形ACDE和ABGF,M為BC中點,MA的延長線交EF于H.求證:
(1)AH⊥EF;
(2)EF=2AM.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

18.如圖,圖中對頂角共有(  )對.
A.3B.6C.8D.12

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.如圖,在平面直角坐標系中,點O為坐標原點,點C的坐標為(8,0),將線段OC向上平移a個單位長度得到線段AB(點B和點A分別是點C和點O的對應點),且a是方程$\frac{3a+5}{4}$-$\frac{a+3}{2}$=1的解,連接BC;
(1)直接寫出點B的坐標;B(8,5);
(2)動點P從點O出發,以每秒1個單位長度的速度沿折線O→A→B勻速運動,B為終點.設運動時間為t秒,線段AP的長為d,點P運動過程中請用含t的式子表示d;
(3)在(2)的條件下,在點P運動的同時,點Q以每秒2個單位長度的速度沿折線A→B→C→O勻速運動,連接OP和OQ,當OQ分四邊形OABC的面積為1:3時,求出t的值及△OPQ的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

20.如圖,在等腰直角三角形ABC中,∠BAC=90°,點A在x軸上,點B的坐標是(0,3).若點C恰好在反比例函數y=$\frac{10}{x}$第一象限內的圖象上,過點C作CD⊥x軸于點D,那么點C的坐標為(5,2).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

20.如圖,已知D是等邊三角形ABC的AB邊延長線上一點,BD的垂直平分線HE交AC延長線于點E,那么CE與AD相等嗎?試說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99精品国产在热久久 | 国产精品一区二区欧美 | 亚洲欧美日韩在线一区 | 一区二区在线免费观看 | 蜜桃视频日韩 | av影音资源 | 日韩综合网 | 福利二区 | 欧美2区 | 亚洲人在线 | caoporon| 国产精品原创巨作av色鲁 | 国产成人精品午夜视频免费 | 在线欧美日韩 | 国产精品欧美久久久久一区二区 | av电影一区二区 | 国产精品日产欧美久久久久 | 日本黄色三级网站 | 欧美a一区| 日韩一区二区不卡 | 亚洲精品久久久狠狠狠爱 | 黄色在线免费看 | 热99re久久免费视精品频软件 | 日本综合视频 | 久久久久久久久久国产 | 亚洲最大成人免费视频 | 成人毛片在线视频 | 偷拍亚洲色图 | 欧美一区2区三区4区公司贰佰 | 亚洲色域网 | 9999国产精品欧美久久久久久 | 精品一区二区三区四区五区 | 一区二区三区在线 | 国产一级片 | 在线观看免费的网站www | 日韩中文字幕免费在线 | 91精品久久久久久久久入口 | 91精品国产91久久久久久吃药 | av观看在线 | 国产精品高潮呻吟 | 在线免费日韩 |